期刊文献+

多自由度齿轮系统非线性动力学分析 被引量:6

Nonlinear Dynamics Analysis of a Multi-DOF Gear System
下载PDF
导出
摘要 建立三自由度多间隙齿轮系统耦合振动模型,综合考虑时变啮合刚度、齿侧间隙和轴承纵向响应等非线性特性因素的影响,并采用变步长4~5 阶Runge-Kutta 法对系统状态方程进行数值求解.构建系统的Poincaré 截面,得到系统的位移-时间映像图,通过分析位移-时间映像图,发现系统在支承间隙较小而支承刚度较大时更加稳定;根据分析位移-时间映像图的结论,选择合理的参数,画出系统随频率变化的分岔图,结合相图和Poincaré 映射图分析系统的非线性动力学特性,发现系统在不同激励频率下会发生Hopf分岔、倍化分岔和混沌等现象. A three-DOF multi-gap coupled vibration model of a gear system was established considering the nonlinear properties such as time-varying meshing stiffness, backlash and bearing longitudinal response factors. Then, the system state equation was solved by using 4-5 order Runge-Kutta integration method with variable step size. The bifurcation diagrams, phase portraits and Poincaré maps which describe the system vibration displacement with the change of excitation frequency under different supporting damping and stiffness were obtained. According to the analysis of the displacement-time map of the system, it was concluded that the system is more stable with larger supporting damping and large stiffness. The bifurcation diagram of the system against frequency variation was plotted based on the reasonable selection of the parameters. The Hopf bifurcation, torus tumble bifurcation and chaos phenomena of the system under different excitation frequencies were discussed based on the phase diagrams and Poincaré maps.
作者 程欧 苟向锋
出处 《噪声与振动控制》 CSCD 2015年第6期31-35,64,共6页 Noise and Vibration Control
基金 国家自然科学基金项目(51365025)
关键词 振动与波 非线性动力学 齿轮系统 多间隙耦合 分岔 vibration and wave nonlinear dynamics gear system multi-gap coupling bifurcation
  • 相关文献

参考文献14

  • 1Kahraman A, Singh R. Non- linear dynamics of a gearedrotor-bearing system with multiple clearances[J]. Journalof Sound and Vibration, 1991, 144(3): 469-506.
  • 2Kahraman A, Blankenship G W. Interactions betweencommensurate parametric and forcing excitations in asystem with clearance[J]. Journal of Sound andVibration, 1996, 194(3): 317-336.
  • 3Chang- Jian C W. Strong nonlinearity analysis for gearbearingsystem under nonlinear suspension-bifurcationand chaos[J]. Nonlinear Analysis: Real WorldApplications, 2010, 11(3): 1760-1774.
  • 4Chang- Jian C W, Chang S M.Bifurcation and chaosanalysis of spur gear pair with and without nonlinearsuspension[J]. Nonlinear Analysis, 2011, 12(2): 979-989.
  • 5Parey A, El Badaoui M, Guillet F, et al. Dynamicmodelling of spur gear pair and application of empiricalmode decomposition- based statistical analysis for earlydetection of localized tooth defect[J]. Journal of Soundand Vibration, 2006, 294(3): 547-561.
  • 6Kim W, Yoo H H, Chung J. Dynamic analysis for a pair ofspur gears with translational motion due to bearingdeformation[J]. Journal of Sound and Vibration, 2010,329(21): 4409-4421.
  • 7王立华,李润方,林腾蛟,杨成云.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-1146. 被引量:57
  • 8王三民,沈允文,董海军.多间隙耦合非线性动力系统的分叉与混沌[J].西北工业大学学报,2003,21(2):191-194. 被引量:13
  • 9苟向锋,吕小红,陈代林.单级齿轮传动系统的Hopf分岔与混沌研究[J].中国机械工程,2014,25(5):679-683. 被引量:12
  • 10杨绍普,申永军,刘献栋.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击,2005,24(3):40-42. 被引量:26

二级参考文献56

共引文献128

同被引文献50

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部