期刊文献+

STA分析:认知多系统模型分析的新方法 被引量:1

The state trace analysis: A new method for analysis of multiple system model
下载PDF
导出
摘要 认知研究领域(如记忆、学习)通常通过分离效应来验证或推定存在多个加工系统,但是这种仅仅通过分离效应直接推定存在多系统的方法存在不足.状态痕迹模型分析(STA)具有更大的适应范围.所谓STA模型分析是一个可以确定影响心理变量的数目,调节一个或多个自变量对两个或多个因变量影响的方法.文章从STA模型分析的分析过程、状态痕迹分析与一般线性模型方法之间的关系,以及STA方法的适应等方面加以阐述,以期更好地探讨认知加工过程. In the field of cognitive research (such as memory,learning),there is now much evidence that cog-nitive processes are mediated by multiple systems through the separation effect.The state trace analysis (STA) has a larger scope of adaptation.The state trace analysis is a method to determine the number of psychological variables,how one or more independent variables affect the two or more factors.This paper introduces the gen-eral statistical program and mathematical reasoning process of STA,and the relationship between the state trace analysis and the general linear model.At the end of the paper,the next stage of the research is pointed out.
作者 邢强 孙海龙
出处 《广州大学学报(自然科学版)》 CAS 2015年第5期83-87,共5页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(31571144) 广东省教育科学规划资助项目(2013WYXM0095) 广东省高校质量工程资助项目(2014GXJK059) 广州市属高校"羊城学者"科研资助项目(1201561646)
关键词 多系统模型 状态痕迹分析(STA) 分离 一般线性模型(GLM) multiple system model the state trace analysis(STA) separation the general linear model(GLM)
  • 相关文献

参考文献14

  • 1NEWELLBR,DUNNJC.Dimensionsindata:Testingpsychologicalmodelsusingstate-traceanalysis[J].TrendCognSci,2008,12:285-290.
  • 2ASHBYFG,O’BRIENJB.Categorylearningandmultiplememorysystems[J].TrendCognSci,2005,9:83-89.
  • 3ASHBYFG,AlFONSO-REESELA,TURKENAU,etal.Aneuropsychologicaltheoryofmultiplesystemsincategorylearning[J].PsyRev,1998,105:442-481.
  • 4ZEITHAMOVAD,MADDOXW T.DualtaskinterferenceinperceptualcategoryLearning[J].MemoryCogn,2006,34:387-398.
  • 5DUNNJC,NEWELLBR,KALISHM.Theeffectoffeedbackdelayandfeedbacktypeonperceptualcategorylearning:Thelimitsofmultiplesystems[J].JExperPsy:Learn,Mem,Cognit,2012,38:840-859.
  • 6NOSOFSKYRM,STANTONRD,ZAKISR.Proceduralinterferenceinperceptualclassification:Implicitlearningorcog-nitivecomplexity-[J].MemCogn,2005,33:1256-1271.
  • 7DUNNJC,JAMESRN.Signeddifferenceanalysis:Theoryandapplication[J].JMathemPsy,2003,47:389-416.
  • 8NEWELLBR,DUNNJC,KALISHM.Thedimensionalityofperceptualcategorylearning:Astate-traceanalysis[J].MemCogn,2010,38:563-581.
  • 9WAGENMAKERSEJ,RATCLIFFR,GOMEZP,etal.Assessingmodelmimicryusingtheparametricbootstrap[J].JMathPsy,2004,48:28-50.
  • 10PRINCEM,HAWKINSG,LOVEJ,etal.AnRpackageforstate-traceanalysis[J].BehavResMeth,2012,44:644-655.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部