期刊文献+

空芯光子带隙光纤散射损耗特性及结构优化研究 被引量:10

Scattering Loss Analysis and Structure Optimization of Hollow-Core Photonic Bandgap Fibers
原文传递
导出
摘要 针对空芯光子带隙光纤内部结构提出了一种准确的建模方法,使用全矢量有限元法研究了纤芯结构变化对光纤散射损耗的影响,对不同纤芯壁厚度以及不同纤芯半径的空芯光子带隙光纤进行了仿真计算,并以归一化分界面场强表征散射损耗的大小。计算结果表明,纤芯壁相对厚度Tc≈4时,散射损耗可以得到较大的降低,同时散射损耗也会随着纤芯半径的增大而减小。通过对纤芯结构进行优化,理论上在1.5~1.56μm波段范围内散射损耗可比现有光纤减小50%。 An accurate modeling method for the internal structure of hollowcore photonic bandgap fiber is proposed, and the effect of core structure on scattering loss is studied by full-vector finite element method. The fibers with different core walls thicknesses and different core radii are simulated, and the normalized interface field intensity is used to characterize the scattering loss. Calculation results show that scattering loss can be largely reduced with the relative core wall thickness Tc≈4. Furthermore, scattering loss decreases with the increase of core radius. With optimized core structure design, the scattering loss can be further reduced down to 50% of the present level in theory within the wavelength range from 1.5 μm to 1.56 μm.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第11期121-126,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61205077)
关键词 光纤光学 空芯光子带隙光纤 有限元法 散射损耗 归一化分界面场强 结构设计 fiber optics hollow-core photonic bandgap fiber finite element method scattering loss normalized interface field intensity structure design
  • 相关文献

参考文献19

  • 1Cregan R F, Mangan B J, Knight J C, et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.
  • 2柴路,胡明列,方晓惠,刘博文,宋有建,栗岩锋,王清月.光子晶体光纤飞秒激光技术研究进展[J].中国激光,2013,40(1):1-14. 被引量:36
  • 3黄崇德,陈迪俊,蔡海文,叶青,刘晔,瞿荣辉,陈卫标.空芯光子晶体光纤吸收池的激光稳频技术[J].中国激光,2014,41(8):28-33. 被引量:7
  • 4王海宾,刘晔,王进祖,毛庆和.光纤型空芯光子晶体光纤低压CO_2气体腔的制备[J].光学学报,2013,33(7):38-42. 被引量:7
  • 5Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: Technology and applications[J]. Nanophotonics, 2013, 2(5-6): 315-340.
  • 6Kim H K, Digonnet M J F, Kino G S. Air-core photonic-bandgap fiber-optic gyroscope[J]. J Lightwave Technol, 2006, 24(8): 3169-5174.
  • 7Digonnet M, Blin S, Kim H K, et al.. Sensitivity and stability of an air-core fibre-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089-3097.
  • 8Blin S, Kim H K, Digonnet M J F, et al.. Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber[J]. J Lightwave Technol, 2007, 25(3): 861-865.
  • 9Lloyd S W, Dangui V, Digonnet M J, et al.. Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes[J]. Opt Lett, 2010, 55(2): 121-123.
  • 10Xu X, Zhang Z, Zhang Z, et al.. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope[J]. Opt Express, 2014, 22(22): 27228.

二级参考文献32

  • 1刘博文,王清月,徐博,李毅,宋有建,张弛,胡明列,柴路.基于中空光子带隙光纤的飞秒激光脉冲压缩[J].中国激光,2009,36(3):620-624. 被引量:4
  • 2王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展[J].中国激光,2006,33(1):57-66. 被引量:72
  • 3高晓明,黄伟,邓伦华,邵杰,樊宏,曹振松,袁怿谦,张为俊,龚知本.1.31μm附近水汽分子的自加宽系数、氮气加宽系数的测量[J].光学学报,2006,26(5):641-646. 被引量:9
  • 4J R Petit, J Jouzel, D Raynaud, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.
  • 5A Fix, C Budenbender, M Wirth, et al. Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 andCH4[J]. SHE, 2011, 8182: 818206.
  • 6K Numata, J R Chen, S T Wu, et al. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide [J]. Appl Opt, 2011, 50(7) : 1047-1056.
  • 7J U White. Long optical paths of large aperture[J]. J Opt Soc Am, 1942, 32(5): 285-288.
  • 8J Altmann, R Baumgart, C Weitkamp. Two-mirror multipass absorption cell[J]. ApplOpt, 1981, 20(6): 995-999.
  • 9P S Light, F Couny, F Benabid. Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photoniccrystalfiber[J]. Opt Lett, 2006, 31(17): 2538-2540.
  • 10P T Marry, J Morel, T Feurer. All-fiber multi-purpose gas cells and their applications in spectroscopy[J]. J Lightwave Technol, 2010, 28(8): 1236-1240.

共引文献46

同被引文献39

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部