期刊文献+

涂覆石墨烯的电介质纳米并行线的传输特性 被引量:13

Propagation Properties of Nano Dielectric Parallel Lines Coated with Graphene
原文传递
导出
摘要 设计了一种由涂覆了单层石墨烯的双椭圆电介质纳米并行线构成的表面等离子体光波导,采用有限元方法对其传输特性、电磁参数以及结构参数之间的依赖关系进行了研究。结果表明:随着椭圆的中心距离的增大,有效折射率的实部逐渐减小,传播距离先增大后减小,模式面积逐渐增大;椭圆的半短轴对有效折射率、传播距离和模式面积有微调作用;通过优化计算,减小并行线之间的距离,增加并行线的半短轴的长度,可以达到更好的传输效果;工作频率越高,有效折射率的实部越小,传输距离越短,模式面积越大;温度越高,有效折射率的实部越大,传输距离越短,模式面积越小。研究结果为基于石墨烯材料的表面等离子激元光波导的设计、制作和应用提供了理论基础。 A kind of surface plasmonic waveguide constructed with double elliptical nano dielectric parallel linescoated with graphene is proposed. The dependence of propagation properties on electromagnetic parameters and structure parameters is studied by using the finite element method.The results show that, when the distance between two ellipses is increased, the real part of the effective refractive index is decreased gradually, and the propagation distance is increased first and then is fallen down, and the mode area is increased gradually. The effective refractive index, the propagation length and the mode area can be adjusted finely by the elliptical semi minor axis. It can achieve better transmission effect by reducing the distance between parallel lines and increasing the length of the semi minor axis of the parallel lines through the optimization calculation. The higher the working frequency is, the smaller the real part of the effective refractive index is, the shorter the propagation distance is, and the larger the mode area is. The higher the temperature is, the larger the real part of the effective refractive index is, the shorter the propagation distance is, and the smaller the mode area is. This work provides a theoretical basis for the design, fabrication and application of the surface plasmon waveguide based on graphene material.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第11期283-290,共8页 Acta Optica Sinica
基金 国家自然科学基金(61178013 61172045) 国家基础科学人才培养基金(J1103210)
关键词 波导 表面光学 传输特性 表面等离子体 石墨烯 waveguides surface optics propagation properties surface plasmonic graphene
  • 相关文献

参考文献20

  • 1K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666- 669.
  • 2F Javier Garcfa de Abajo. Graphene plasmonics: Challenges and opportunities[J]. ACS Photonics, 2014, 1(3): 135-152.
  • 3A K Geim , K S Novoselov. The rise of graphene[J]. Nature Material, 2007, 6(3): 183-191.
  • 4F H Koppens, D E Chang, F J Garcia de Abajo. Graphene plasmonics: A platform for strong lightmatter interactions[J]. Nano Lett, 2011 11(8): 3370-3377.
  • 5A Vakil, N Engheta. Transformation optics using graphene[J]. Science, 2011,332(6035): 1291-1294.
  • 6M Jahlan, H Buljan, M Soljaoie, et al.. Plasmonies in graphene at infrared frequeneies[J]. Phys Rev B, 2009, 80(24): 245435.
  • 7Q Bao, K P Loh. Graphene photonies, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.
  • 8F Bonaecorso, Z Sun, T Hasan, et al.. Graphene photonics and optoelectronics[J], Nat Ptotonics, 2010, 4(9): 611-622.
  • 9孙晓明,曾捷,张倩昀,穆昊,周雅斌.内置调制层型光纤表面等离子体波共振传感器研究[J].光学学报,2013,33(1):244-250. 被引量:2
  • 10王弋嘉,张崇磊,王蓉,朱思伟,袁小聪.表面等离子体共振成像系统相位提取[J].光学学报,2013,33(5):229-233. 被引量:10

二级参考文献63

  • 1郭小伟,陈德军,欧中华,刘永智.一种基于表面等离子体共振的多模光纤H_2传感器[J].光电子.激光,2009,20(4):458-461. 被引量:6
  • 2T. L. Yeo, T. Sun, K. T. V. Grattan. Fibre-optic sensor technologies for humidity and moisture measurement[J]. Sensors and Actuators A, 2008, 144(2) : 280-295.
  • 3Henghua Deng, Dongfang Yang, Bo Chen et al. Simulation of surface plasmon resonance of Au WO3x and Ag-WO3 x nanocomposite films [J]. Sensors and Actuators B: Chemical, 2008, 134(2): 502-509.
  • 4B. J. Jeon, M. H. Kim, J. C. Pyun. Application of a functionalized parylene film as a linker layer of SPR biosensor[J]. Sensors and Actuators B : Chemical , 2011, 154(2) : 89-95.
  • 5Y. Chen, R. S. Zheng, Y. H. Lu. Fiber optic surface plasmon resonant sensor with low-index anti-oxidation coating[J]. Chin. Opt. Lett. , 2011, 9(10): 100605.
  • 6B. D. Gupta, Anuj K. Sharma. Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study[J]. Sensors and Actuators B, 2005, 107 (1) : 40-46.
  • 7R. Shams, P. Sadeghi. On optimization of finite-difference time- domain (FDTD) computation on heterogeneous and GPU clusters [J]. J. Parallel and Distributed Computing, 2011, 71 (4): 584-593.
  • 8Kyoungsook Park, Junhyoung Ahn, So Yeon Yi et al.. SPR imaging-based monitoring of caspase-3 activation[J]. Biochemical and Biophysical Research Communications, 2008, 368(3): 684-689.
  • 9Takeshi Mori, Kazuki Inamori, Yusuke Inoue et al.. Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging[J]. Analytical Biochemistry, 2008, 375(2): 223-231.
  • 10A. M. P. B. Seneviratne, Michael Burroughs, Ernest Giralt et al.. Direct-reversible binding of small molecules to G protein βγ subunits[J]. Biochim Biophys Acta, 2011, 1814(9): 1210-1218.

共引文献14

同被引文献96

  • 1李春芳,杨晓燕,段弢,张纪岳.电介质膜增强的Goos-Hnchen位移的微波测量[J].中国激光,2006,33(6):753-755. 被引量:8
  • 2武京治,李仰军.Light beams with orbital angular momentum for free space optics[J].Chinese Physics B,2007,16(5):1334-1338. 被引量:3
  • 3Raether H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].New York:Springer-Verlag,1988.
  • 4Shih-Hui C,Stephen G,George S.Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films[J].Optics Express,2005,13(8):3150-3165.DOI:10.1364/OPEX.13.003150.
  • 5Pile D F P,Ogawa T,Gramotnev D K,et al.Two-dimensionally Localized Modes of a Nano-scale Gap Plasmon Waveguide[J].Applied Physics Letters,2005,87(26):261114-261114-3.DOI:10.1063/1.2149971.
  • 6Pile D F P,Ogawa T,Gramotnev D K,et al.Theoretical and Experimental Investigation of Strongly Localized Plasmons on Triangular Metal Wedges for Subwavelength Waveguiding[J].Applied Physics Letters,2005,87(6):061106-061106-3.Doi:10.1063/1.1991990.
  • 7Novoselov KS,Geim AK,Morozov SV,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306(5696):666-669.DOI:10.1126/science.1102896.
  • 8Geim AK,Novoselov KS.The Rise of Graphene[J].Nature Material,2007,6(3):183-191.DOI:10.1038/nmat1849.
  • 9Javier F,García de Abajo.Graphene Plasmonics:Challenges and Opportunities[J].ACS Photonics,2014,1(3):135-152.DOI:10.1021/ph400147yJ.
  • 10Koppens FH,Chang DE,García de Abajo FJ.Graphene Plasmonics:a Platform for Strong Light Matter Interactions[J].Nano Lett.2011(8):3370-3377.DOI:10.1021/nl201771h.

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部