期刊文献+

偶特征有限域上一类高斯正规基的对偶基及迹基 被引量:1

The Trace and Dual Bases of Some Special Gaussian Normal Bases over Finite Fields with Even Characteristic
下载PDF
导出
摘要 设q为2的方幂,文献(李波,廖群英.数学进展,2015,44(3):394-404.)确定了F_(q^n)在F_q上的一类特殊的高斯正规基及其对偶基的生成元.进一步完全确定了这类正规基的对偶基及迹基的乘法表和复杂度,从而完善了主要结果.并证明了这类正规基的迹基是最优正规基. Let q be a power of 2. Recently, the dual basis of some special Gaussian normal base of the finite filed F_(q^n)over F_q is determined in literature( Li B, Liao Q Y. Adv Math(China) ,2015,44(3) :394 -404. ). The present paper continues the study and determines the complexity of the dual and trace basis for the above Gaussian normal bases completely, and it is proved that the trace basis is optimal.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期802-809,共8页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11401408) 四川省教育厅重点项目基金(14ZA0034)
关键词 有限域 高斯正规基 对偶基 迹正规基 乘法表 复杂度 finite field Gauss normal basis dual basis trace normal basis multiplication table complexity
  • 相关文献

参考文献16

  • 1Mullin R, Onyszchuk I, Vanstone S, et al. Optimal bases in GF(p) [ J]. Discrete Applied Math, 1988/1989,22 (2)149 - 161.
  • 2Gao S, Lenstra H Jr. Optimal normal bases[J]. Design,Codes and Cryptography, 1992,2:315 -323.
  • 3Gao S. Normal Bases over Finite Fields [ D ]. Ontario : Waterloo, 1993.
  • 4Wassermann A. Konstruktion yon normal basen[ J]. Bayreuther Mathematische Schriften, 1990,31:155 - 164.
  • 5廖群英,孙琦.有限域上最优正规基的乘法表[J].数学学报(中文版),2005,48(5):947-954. 被引量:8
  • 6Christopoulou M, Garefalakis T, Panario D, et al. Gauss periods as constructions of low complexity normal bases [ J ]. Designs, Codes Cryptography,2012,62( 1 ) :43 - 62.
  • 7廖群英,胡晓兰.有限域上一类高斯正规基复杂度的准确计算公式[J].数学学报(中文版),2014,57(5):863-874. 被引量:3
  • 8Menezes A J, Blake I F, Gao X H, et al. Applications of Finite Fields[ M ]. New York:Kluwer Academic Publishers, 1993.
  • 9Liao Q Y. The gaussian normal basis and its trace basis over finite fields[J]. J Numb Theory,2012,132(7) :1507 - 1518.
  • 10Beth T. Generalizing the discrete fourier transform[ J]. Discrete Math, 1985,56:95 - 100.

二级参考文献15

  • 1廖群英,孙琦.有限域上最优正规基的乘法表[J].数学学报(中文版),2005,48(5):947-954. 被引量:8
  • 2廖群英,孙琦.有限域上存在弱自对偶正规基的一个充要条件[J].数学年刊(A辑),2007,28(2):273-280. 被引量:3
  • 3Mullin R., Onyszchuk I., Vanstone S., Wilson R., Optimal normal bases in GF(pn), Discrete Applied Math.,1988/1989, 22: 149-161.
  • 4Blake I., Gao S., Mullin R., Vanstone S., Yaghoobian T., Applications of finite fields, Kluwer: Kluwer Academic Publishers, 1993.
  • 5Lidl R., Niederreiter H., Finite fields, Cambrige: Cambrige University Press, 1987.
  • 6Agnew G., Mullin R., Onyszchuk I., Vanstone S., An implementation for a fast public key cryptosystem, J.of Cryptology, 1991, 3: 63-79.
  • 7Rosati T., A high speed data encryption processor for public key cryptography, San diego: Proc. of IEEE Custom Integrated Circuites Conference, 1989: 1231-1235.
  • 8Gao S., Lenstra H. W., Optimal normal bases, Disigns, Codes and Cryptology, 1992, 2: 315-323.
  • 9Sun Q., An algorithm on the multiplication table of the normal basis over finite fields, J. Sichuan Univ. Nat.Sci. Ed., 2003, 40(3): 447-452 (in Chinese).
  • 10Shuhong Gao.Algorithms for Exponentiation in Finite Fields[J].Journal of Symbolic Computation.2000(6)

共引文献11

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部