期刊文献+

有极小理想的半环 被引量:1

Semirings with Minimal Ideals
下载PDF
导出
摘要 首先讨论了半环中极小理想的存在性问题,给出了极小理想存在的一些充要条件,其次给出了极小理想的一些特征,最后描述了有极小理想的半环的结构. This paper investigates the existence of minimal ideal in semirings and the structure of semiring with minimal ideal. Some sufficient and necessary conditions for the existence of minimal ideals in a semiring are given, some characterizations of minimal ideals are studied and the structure of semirings with minimal ideals is described.
作者 何鹏 舒乾宇
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期810-817,共8页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11401410) 教育部博士点基金(20105134110002) 四川省教育厅自然科学青年基金(13ZB0165)
关键词 半环 极小理想 Wedderburn结构 semiring minimal ideal Wedderburn structure
  • 相关文献

参考文献20

  • 1Vandiver H S. Note on a simple type of algebra in which cancellation law of addition does not hold[ Jl- Bull Am Math Soc, 1934 40:914 - 920.
  • 2Aho A V, Ullman J D. Languages and Computation[ M ]. Reading MA : Addison Wesley, 1976.
  • 3Feng F, Jun Y B, Zhao X Z. On * -/x-semirings[J]. Inform Sci,2007,177:5012 -5023.
  • 4Glazek K. A Guide to Literature on Semirings and Their Applications in Mathematics and Information Science:with Complete Bil- liography [ M ]. Dordrecht : Kluwer Acad Publ,2002.
  • 5Hebisch U, Weinert H J. Semirings : Algebraic Theory and Applications in the Computer Science [ M ]. Singapore : World Scientif- ic, 1998.
  • 6Kuich W. Automata and languages generalized to co -continuous semirings [ J ]. Theory Comput Sci, 1991,79:137 -150.
  • 7Roman S. Coding Theory and Information Theory [ C ]//Graduate Texts in Mathematics. New York:Springer- Verlag, 1992.
  • 8Shry H J. Free Monoids and Languages[ D]. Taipei:Soochow University,1979.
  • 9LaGrassa S. Semirings : Ideals and Polynomials [ D ]. Iowa: University of Iowa, 1995.
  • 10Alarcon F E, Anderson D D. Commutative semirings and their lattices of ideals[ J]. Houston J Math, 1994,20:571 -590.

二级参考文献56

  • 1徐章艳,杨炳儒.Fuzzy集上基于一般蕴含算子的α-三I算法[J].广西师范大学学报(自然科学版),2005,23(4):42-45. 被引量:7
  • 2Zadeh L A.Similarity relations and fuzzy orderings[J].Information Sciences,1971,3:177-200.
  • 3Hashimoto H.Conwergence of powers of a fuzzy transitive matrix[J].Fuzzy Sets and Systems,1983,9:153-160.
  • 4Kolodziejczyk W.Orlovsky’s concept of decision-making with fuzzy preference relation-further results[J].Fuzzy Sets and Sys-tems,1988,19:11-20.
  • 5Kolodziejczyk W.Decomposition problem of fuzzy relations:further results[J].Inter J Gen Sys,1988,14:307-315.
  • 6Li J X.Controllable fuzzy matrices[J].Fuzzy Sets and System,1992,45:313-319.
  • 7Fan Z T.The convergence index ofan implication matrix[J].Fuzzy Sets and Systems,2001,123:265-269.
  • 8Fan Z T,Liu D F.On the oscillating power sequence of a fuzzy matrix[J].Fuzzy Sets and Systems,1998,93:75-85.
  • 9Lur Y Y,Wu Y K,Guu S M.On the max-generalized mean powers of a fuzzy matrix[J].Fuzzy Sets and Systems,2010,161(5):750-762.
  • 10Lur Y Y,Wu Y K,Guu S M.Convergence of powers for a fuzzy matrix with convex combination of max-min and max-arith-metic mean operations[J].Information Sciences,2009,179(7):938-944.

共引文献1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部