期刊文献+

F频段三倍频放大多功能芯片设计与实现 被引量:1

Design and Implementation of F-Band Triple Frequency Amplification Multi-Function Chip
下载PDF
导出
摘要 基于InP高电子迁移率晶体管(HEMT)工艺,研制了一款F频段三倍频放大多功能芯片。将三倍频器与驱动放大器级联,实现了F频段三倍频放大的单片集成。前端三倍频器电路由输入匹配电路、输入低通滤波电路、并联二极管对、输出高通滤波电路与输出匹配电路构成,通过反向并联二极管对实现三次倍频,在优化匹配前后级电路的同时,通过输入低通滤波器与输出高通滤波器滤除三次谐波外的基波与各次谐波。后端所级联的驱动放大器采用四级管芯级联的双电源拓扑结构来提高增益及输出功率。测试结果表明,输入频率为30~47 GHz、输入功率为15 dBm时,输出频率为90~141 GHz,输出功率大于6 dBm,输入回波损耗小于-13 dB,输出回波损耗小于-6 dB。芯片尺寸为4.40 mm×1.60 mm×0.07 mm。 An F-band triple frequency amplification multi-function chip was fabricated based on InP high electron mobility transistor(HEMT)process.The tripler was cascaded with the driver amplifier to achieve monolithic integrated circuit of F-band triple frequency amplification.The topology of the tripler circuits includes an input matching circuit,an input low pass filter circuit,a reverse parallel diode pair,an output high pass filter circuit and an output matching circuit.Triple frequency was realized by reverse parallel diode pair.While optimizing the matching front and rear stage circuits,the fundamental wave and each harmonic other than the third harmonic were filtered by the input low pass filter and the output high pass filter.The amplifier cascaded at the back end used a four-stage cascading dual-supply topology to increase gain and output power.The test results show that when the input frequency is in the range of 30-47 GHz and the input power is 15 dBm,the output frequency is 90-141 GHz,the output power is greater than 6 dBm,the input return loss is less than-13 dB,and the output return loss is less than-6 dB.The chip size is 4.40 mm×1.60 mm×0.07 mm.
作者 薛昊东 吴洪江 王雨桐 Xue Haodong;Wu Hongjiang;Wang Yutong(The 13th Research Institute,CETC,Shijiazhuang 050051,China)
出处 《半导体技术》 CAS 北大核心 2019年第10期762-766,789,共6页 Semiconductor Technology
关键词 多功能芯片 微波单片集成电路(MMIC) InP高电子迁移率晶体管(HEMT) F频段 倍频器 放大器 multi-function chip monolithic microwave integrated circuit(MMIC) InP high electron mobility transistor(HEMT) F-band frequency multiplier amplifier
  • 相关文献

参考文献6

二级参考文献23

  • 1Eisele H, Hadda G I. High-performance InP Gunn de- vices for fundamental-mode operation in D-band (ll0- 170GHz). 1EEE Transactions on Microwave Wireless Components Letters, 1995, 5 ( 11 ) : 385-387.
  • 2Eisele H, Hadda G I. Two-terminal millimeter-wave sources. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(6): 739-746.
  • 3Eisele H, Hadda G I. Potential and capabilities of two- terminal devices as millimeter and submillimeter-wavefundamental sources. In: IEEE MTI'-S International Mi- crowave Symposium Digest, Anaheim, USA, 1999. 933- 936.
  • 4Bangert A, Schlechtweg M, Lang M, et al. W-band MMIC VCO with a large tuning range using a pseudomor- phic HFET. In: IEEE MT'F-S International Microwave Symposium Digest, San Francisco, USA, 1996. 525-528.
  • 5Uchida K, Matsuura H, Yakihara T, et al. A series of InGaP/InGaAs HBT oscillators up to D-Band. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(5) : 858-865.
  • 6Winkler W, Borngraber J. LC-oscillator for 94 GHz auto- motive radar system fabricated in SiGe: BiCMOS technol- ogy. In: Gallium Arsenide Applications Symposium, Am- sterdam, Netherlands, 2004. 45-46.
  • 7Campos R Y, Schw6rer C, Leuther A, et al. A D-band frequency doubler MMIC based on a 100-nm metamorphic HEMT technology. IEEE Transactions on MicrowaveWireless Components Letters, 2005, 15(7) : 466-468.
  • 8Campos R Y, Schwrer C, Leuther A, et al. G-Band metamorphic HEMT-based frequency multipliers. 1EEE Transactions on Microwave Theory and Techniques, 2006, g (7) : 2983-2992.
  • 9Cao C H, Kenneth K O. A 140GHz fundamental mode voltage-controlled oscillator in 90nm CMOS tehnology. IEEE Transactions Microwave Wireless Components Letters, 2006, 16(10) : 555-557.
  • 10Nicolson S T, Yau K H K, Chevalier P, et al. Design and scaling of W-band SiGe BiCMOS VCOs. IEEE Jour- nal of Solid-State Circuits, 2007, 42(9) : 1821-1833.

共引文献19

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部