期刊文献+

基于深度学习的无线传感器网络数据融合 被引量:10

Data aggregation in wireless sensor networks based on deep learning
下载PDF
导出
摘要 在无线传感器网络数据融合算法中,BP神经网络被广泛用于节点数据的特征提取和分类。为了解决BP神经网络收敛慢、易陷入局部最优值且泛化能力差从而影响数据融合效果的问题,提出一种将深度学习技术与分簇协议相结合的数据融合算法SAESMDA。SAESMDA用基于层叠自动编码器(SAE)的深度学习模型SAESM取代BP神经网络,算法首先在汇聚节点训练SAESM并对网络分簇,接着各簇节点通过SAESM对采集数据进行特征提取,之后由簇首将分类融合后的特征发送至汇聚节点。仿真实验表明,与采用BP神经网络的BPNDA算法相比,SAESMDA在网络能耗大致相同的情况下具有更高的特征提取分类正确率。 Data fusion algorithms widely used BP neural network to extract and classify the node data features in wireless sen- sor networks. In order to overcome the shortcomings of BP neural network leading to poor performance for data fusion, such as low convergence speed, local optimal and bad generalization ability, this paper proposed a data fusion algorithm SAESMDA combined with deep learning technology and wireless sensor network clustering routing protocol. SAESMDA used deep learning model SAESM based on stacked autoencoder(SAE) instead of the BP neural network, algorithm firstly trained SAESM in sink node and generated clusters for network, then used SAESM to exacted node data features in cluster nodes, finally the data fea- tures in the same class would be fused and sent to sink node by cluster heads. Simulation experiments show that compared with BPNDA based on the BP neural network , SAESMDA has a higher feature extraction and classification accuracy with the simi- lar network energy consumption.
出处 《计算机应用研究》 CSCD 北大核心 2016年第1期185-188,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(51277091) 福建省科技计划重点项目(2011H0017) 福建省教育厅科技计划项目(JA12263) 福州市科技计划项目(2013-G-86)
关键词 无线传感器网络 数据融合 深度学习 自动编码器 wireless sensor networks data fusion deep learning autoencoder
  • 相关文献

参考文献14

  • 1孔玉静,侯鑫,华尔天,魏星锋.基于BP神经网络的无线传感器网络路由协议的研究[J].传感技术学报,2013,26(2):246-251. 被引量:21
  • 2孙凌逸,黄先祥,蔡伟,夏梅尼.基于神经网络的无线传感器网络数据融合算法[J].传感技术学报,2011,24(1):122-127. 被引量:65
  • 3俞黎阳,王能,张卫.无线传感器网络中基于神经网络的数据融合模型[J].计算机科学,2008,35(12):43-47. 被引量:32
  • 4杨永健,刘帅.基于SOFM神经网络的无线传感器网络数据融合算法[J].传感技术学报,2013,26(12):1757-1763. 被引量:19
  • 5Bengio Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127.
  • 6Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
  • 7Vincent P,Larochelle H,Lajoie L,et al.Stacked denoising autoenco-ders:learning useful representations in a deep network with a local denoising criterion[J].Transportation Journal of Machine Lear-ning Research,2010,11(12):3371-3408.
  • 8Yu Dong,Deng Li.Deep convex net:a scalable architecture for speech pattern classification[C] //Proc of the 12th Annual Confe-rence of International Speech Communication Association.2011:2285-2288.
  • 9Poon H,Domingos P.Sum-product networks:a new deep architecture[C] //Proc of IEEE International Conference on Computer Vision Workshops.2011:689-690.
  • 10Mohamed A,Sainath T N,Dahl G,et al.Deep belief networks using discriminative features for phone recognition[C] //Proc of IEEE International Conference on Acoustics,Speech and Signal Processing.2011:5060-5063.

二级参考文献41

  • 1贾建华,王军峰,冯冬青.人工神经网络在多传感器信息融合中的应用研究[J].微计算机信息,2006,22(03S):192-194. 被引量:16
  • 2李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 3Heidemann J, Silva F, Intanagonwiwat C, et al. Building efficient wireless sensor networks with low-level naming[C]///ACM SOSP. 2001
  • 4Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient Communication Protocols for Wireless Microsensor Networks [C]//Hawaaian Int'l Conf. on Systems Science. 2000
  • 5Yu L, Wang N, Zhang W, et al. GROUP: a Grid-clustering Routing Protocol for Wireless Sensor Networks[C]//IEEE International Conference on Wireless Communications, Networking and Mobile Computing. 2006
  • 6Krishnamachari B, Estrin D, Wicker S. The Impact of Data Aggregation in Wireless Sensor Networks[C]//The 22nd International Conference on Distributed Computing Systems Workshops. 2002
  • 7Intanagonwiwat C, Govindan R, Estrin D. Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks[C]//MOBICOM 2000. August 2000: 56-67
  • 8Intanagonwiwat C, Estrin D, et al. Impact of Network Density on Data Aggregation in Wireless Sensor Networks [R]. Technical Report 01-750. University of Southern California, Computer Science Department, 2001
  • 9Madden S, Franklin M J, et al. Tag: A Tiny Aggregation Service for Ad hoc Sensor Networks[C]//USENIX OSDI. 2002
  • 10Arici T, Gedik B, Altunbasak Y, et al. PINCO: a Pipelined Innetwork Compression Scheme for Data Collection in Wireless Sensor Networks [C]//Proc. IEEE Int. Conf. Computer Communications and Networks. 2003

共引文献110

同被引文献66

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部