摘要
针对目前量化隐写分析对嵌入率较低的图像检测效果不好的问题,提出了一种分层量化隐写分析的思想。采用与负载值大小变化相关的权重系数构成的损失函数进行检测,并估计出负载值变化区间,然后对评估后的结果进行分段,使用增大相应分段权值的损失函数进行二次检测。实验结果表明,与经典的梯度增量树的算法比较,提出的加权思想以及分层检测法对负载值低的图像检测效果有所提升,整体检测具有较高的准确率。
Concerned with the bad effect of the detection of the images with lower embedding rate under the current quantita- tive steganalysis,this paper proposed a method of layered quantitative steganalysis. It initially used loss function consisted of changing weight coefficient related to payload value for testing to detect and estimate the payload range. Then it segmented the results of assessment into several parts, and used the loss function of increasing corresponding piecewise weight for a second de- tection. The experimental results show that, compared with classical gradient boosting tree algorithm, the detection effect of pro- posed algorithm for lower payload image is better improved, and the overall detection has higher accuracy.
出处
《计算机应用研究》
CSCD
北大核心
2016年第1期255-257,265,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(61379152)
关键词
量化隐写分析
分层检测法
损失函数
梯度增量
负载值
quantitative steganalysis
layered detection
loss function
gradient boosting
payload