期刊文献+

基于MRF的高性能二进制LDPC码译码算法

High- performance Decoding Algorithm for LDPC Code Based on MRF
下载PDF
导出
摘要 二进制LDPC码译码改进算法主要是提升硬判决性能或者降低软判决计算复杂度。应用高斯—马尔可夫随机场(Markov Random Field,MRF)模型实现信源参数估计,对信道译码端接收的比特序列进行对数似然比修正,在译码时加入信源的残留冗余信息来增加译码器的纠错能力。信源估计修正系数自适应可变,是由误码率参数调控。在计算复杂度不变的情况下,基于MRF的LDPC码译码算法有效提高了译码性能,降低误比特率。 LDPC code decoding algorithm is mainly to enhance the performance of a hard decision or soft decision to reduce the computational complexity. We Use Gauss - Markov random field model to achieve the source parameter estimation, the bit sequence channel decoder receives the logarithmic likelihood ratio correction, adding the source of information during the decoding residual redundancy to increase the decoder the error correction capability. Source estimated correction factor adap- tive variable, is regulated by the BER parameter. In the case of the computational complexity of the same, based on the MRF LDPC code decoding algorithm can effectively improve the performance of the LDPC code decoding algorithm to reduce the bit error rate .
出处 《电声技术》 2015年第11期75-78,82,共5页 Audio Engineering
关键词 低密度奇偶校验 马尔可夫随机场 参数估计 LDPC MRF parameters estimation
  • 相关文献

参考文献9

  • 1GALLAGER R G. Low - density parity - check codes [ J ]. IRE Transactions on Information Theory, 1962, 8( 1 ) : 21 - 28.
  • 2BERROU C, GLAVIEUX A. Near optimum error correcting coding and decoding. Turbo - codes [ J ]. IEEE Transactions on Communications, 1996, 44(10) : 1261 - 1271.
  • 3CHEN J, FOSSORIER M P C. Near optimum universal be- lief propagation based decoding of low - density parity - check codes [ J ]. IEEE Transactions on Communications, 2002, 50(3) : 406 -414.
  • 4Progressive edge - growth tanner graphs [ J ]. IEEE Trans- actions on Communications,2005, 51 (1) : 386 -398.
  • 5BABICH F, MONTORSI G, VATFA F. Some notes on Rate - compatible Punctured Turbo Codes ( RCPTC ) de- sign [ J]. IEEE Transactions on Communications, 2004, 52(5 :681 -684.
  • 6KIM J B. Multi - solution based watersheds for efficient im- age segmentation [ J]. Pattern Recognition Letters, 2003, 24(13) : 473 -488.
  • 7ZHONG Hao, ZHANG Tong. Block - LDPC: A practicalLDPC coding system design approach [ J ]. IEEE Transac- tions on Circuits and Systems, :2005, 52(4) : 766 -775.
  • 8赵旦峰,刘腾宇,杨大伟,石雷.改进的LDPC码译码算法[J].吉林大学学报(工学版),2009,39(4):1090-1093. 被引量:2
  • 9张高远,周亮,文红.LDPC码偏移修正加权比特翻转译码算法[J].系统工程与电子技术,2014,36(11):2288-2294. 被引量:1

二级参考文献18

  • 1Gallager R G. Low density parity check codeseJ]. IRE Trans. on Information Theory,1962,8(1) :21-28.
  • 2MacKay 0] C. Good codes based on very sparse matricesj J]. IEEE Trans. on Information Theory, 1999,45(2) : 1645 - 1646.
  • 3Yazdani M, Hemati S,Banihashemi A. Improving belief propagation on graphs with cycles[J]. IEEE Communications Letters, 2004,8(1) :57 - 59.
  • 4Chen] ,Oholakia A ,Eleftheriou E,et al. Reduced-complexity decoding of LOpe codes[J]. IEEE Trans. on Communications, 2005,53(8) : 1288 - 1299.
  • 5Kou v, Lin S, Fossorier M. Low-density parity-check codes based on finite geometries: a rediscovery and new results [J]. IEEE Trans. on Information Theory ,2001 ,47(7) :2711 - 2736.
  • 6Zhang J, Fossorier M. A modified weighted bit-flipping decoding of low-density parity-check codes [J]. IEEE Communications Letters ,2004,8(3): 165 -167.
  • 7Jiang M,Zhao Cv Shi Z,et al. An improvement on the modified weighted bit flipping decoding algorithm for LOpe codes [J]. IEEE Communications Letters, 2005,9 (9) : 814 - 816.
  • 8Liu Z, Pados 0 A. A decoding algorithm for finite-geometry LOpe codes [J]. IEEE Trans. on Communications, 2005,53 (3) : 415 - 421.
  • 9Guo F, Hanzo L. Reliability ratio based weighted bit-flipping decoding for low-density parity-check codes [J]. Electronics Letters ,2004,40(21): 1356 -1358.
  • 10Wadayama Tv Nakamura K,Yagita M,et al. Gradient descent bit flipping algorithms for decoding LOpe codes [J].IEEE Trans. on Communications ,2010,58(6): 1610 -1614.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部