期刊文献+

格的TL-模糊理想(英文)

ON TL-FUZZY IDEALS IN LATTICES
下载PDF
导出
摘要 本文研究了格的TL-模糊理想.利用生成TL-模糊理想,证明了一个模格的全体TM-模糊理想形成一个完备的模格.此外,利用L-模糊集的投影和截影,获得了将直积格的TL-模糊理想表示成分量格的TL-模糊理想的T-直积的一个充分必要条件.所得结果进一步推广和发展了格的模糊理想的理论. In this paper,we study T L-fuzzy ideals in lattices.By a T L-fuzzy ideal generated by an L-fuzzy subset,we prove that the lattice of TM-fuzzy ideals in a modular lattice is a complete modular lattice.Moreover,using the projection and the cut shadow of an L-fuzzy set,we obtain necessary and sufficient conditions for a T L-fuzzy ideal of a Cartesian product of lattices to be a T-product of T L-fuzzy ideals of lattices.Our results generalize and develop the fuzzy ideal theory in lattices.
机构地区 西北大学数学系
出处 《数学杂志》 CSCD 北大核心 2015年第6期1341-1352,共12页 Journal of Mathematics
基金 Supported by Graduate Independent Innovation Foundation of Northwest University(YZZ12061) Scientific Research Program Funded by Shaanxi Provincial Education Department(2013JK0562)
关键词 左连续t-模 模糊理想 模格 T-直积 left continuous t-norm T L-fuzzy ideal modular lattice T-product
  • 相关文献

参考文献17

  • 1Cintula P, Hjek P. Triangular norm based predicate fuzzy logics[J]. Fklzzy Sets and Systems, 2010 161: 311-346.
  • 2Esteva F, Godo L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J] Fklzzy Sets and Systems, 2001, 124: 271-288.
  • 3Hgjek P. Observations on the monoidal t-norm logic[J]. Fuzzy Sets and Systems, 2002, 132:107-112.
  • 4Noguera C, Esteva F, Godo L. Generalized continuous and left-continuous t-norms arising from algebraic semantics for fuzzy logics[J]. Information Sciences, 2010, 180: 1354-1372.
  • 5Klement E P. Mesiar R, Pap E. Triangular norms[J]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 6Rosenfeld A. Fuzzy groups[J]. J. Math. Anal. Appl., 1971, 35: 512-517.
  • 7Anthony J M, Sherwood H. Fuzzy groups redefined[J]. J. Math. Anal. Appl., 1979, 69: 124-130.
  • 8Anthony J M, Sherwood H. A characterization of fuzzy subgroups[J]. J. Math. Anal. Appl., 1979, 69: 297-305.
  • 9Hu Baoqing. Fuzzy groups and T-fuzzy groups with thresholds[J]. Advances in Fuzzy Mathematics, 2010, 5: 17-29.
  • 10Chon I. Fuzzy subgroups as products[J]. Fuzzy Sets and Systems, 2004, 141: 505-508.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部