期刊文献+

全纯A_μ空间中K-泛函和光滑模的等价性

EQUIVALENCE OF K-FUNCTIONAL AND MODULUS OF SMOOTHNESS IN HOLOMORPHIC A_μ SPACES
下载PDF
导出
摘要 本文研究了Cn中星型圆形域D上的全纯Aμ空间中两个逼近工具光滑模与K-泛函的关系问题,通过得到Aμ空间中的Bernstein不等式,获得了利用径向导数定义新的K-泛函与光滑模与K-泛函的等价性以及Marchaud不等式,推广了实函数空间中的结果. In this paper,we study the relation between K-functional and modulus of smoothness in Aμspaces on starlike circular domain of Cnand get Bernstein inequality.A kind of K-functional is introduced by the radial derivative to obtain the equivalence of K-functional and the moduli of smoothness and Marchaud inequation,which extend the previous results.
出处 《数学杂志》 CSCD 北大核心 2015年第6期1431-1437,共7页 Journal of Mathematics
基金 国家自然科学基金(11126246) 河北省教育厅科研基金(QN20131027) 河北经贸大学校内科研基金(2013KYQ07) 河北省自然科学基金(A2015207007)
关键词 Aμ空间 K-泛函 光滑模 BERNSTEIN不等式 Aμspace K-functional modulus of smoothness Bernstein inequality in real function spaces.
  • 相关文献

参考文献10

  • 1Zhu K H. Spaces of holomorphic functions in the unit ball[M]. Berlin: Springer-Verlag, 2004.
  • 2Peetre J. A theory of interpolation of normed spaces[M]. Rio de Janerio: Inst. de Math. Pura Appl., 1968.
  • 3Ditzian Z, Hristov V H, Ivanov K G. Moduli of smoothness and K-Functionals in Lp, 0 < p < l[J]. Constr. Approx., 1995, 11(1): 67-83.
  • 4Rustamov Kh P. Equivalence of K-functional and moduli of smoothness of functions of on the sphere[J]. Mathematical Notes, 1992, 52(3): 965-970.
  • 5Belkina E S, Platonov S S. Equivalence of K-Functionals and modulus of smoothness constructed by generalized Dunkl translations[J]. Russian Mathematics, 2008, 52(8): 1-11.
  • 6Dai F, Xu Y. Approximation theory and harmonic analysis on spheres and ballsIM]. New York: Springer-Verlag, 2013.
  • 7陈英伟,王志军,刘玉军.Hardy型A_μ空间中的Jackson定理[J].河北师范大学学报(自然科学版),2013,37(2):113-118. 被引量:4
  • 8Arestov V V. On integral inequalities for trigometric polynomials and their derivatives[J]. Math USSR Izv., 1982, 18(1): 1-17.
  • 9Devore R A, Lorentz G G. Construction approximation[M]. Berlin: Springer-Verlag 1993.
  • 10Storoznko l A. Approximation of functions of class Hp, 0 p l[J]. Math. USSR Sb., 1978 34(4): 527-545.

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部