期刊文献+

一类对称多项式在微分几何中的应用

A CLASS OF SYMMETRIC POLYNOMIAL AND ITS APPLICATIONS ON DIFFERENTIAL GEOMETRY
下载PDF
导出
摘要 本文研究了卵形面特征刻画.利用麦克劳林不等式及对称多项式的性质,获得了一个An+1中的卵形面,若其任意三个连续高阶仿射平均曲率乘积为常熟,且Ln=0,则该卵形面为椭圆的结果.推广了现有文献关于卵形面的刻画结果. In this paper,we study the charachters of ovaloid.By using the Machaurin's inequality and symmetric polynomial,we prove that an ovaloid in An+1is an ellipsoid if the product of its three random continuous affine mean cervatures is constant and Ln = 0,which is a generalization of the characterization of ovaloid.
作者 曹然 王宝富
出处 《数学杂志》 CSCD 北大核心 2015年第6期1481-1486,共6页 Journal of Mathematics
基金 国家自然科学基金项目资(11171235)
关键词 对称多项式 卵形面 椭球 symmetric polynomial ovaloid ellipsoid
  • 相关文献

参考文献6

  • 1Li Anmin, Simon U, Zhao Guosong. Global affine differential geometry of hypersurfaces[M]. New York: Walter de Gruytrt, 1993.
  • 2Hsiung C C, Shahin J K. Affine differential geometry of closed hypersurfaces[A]. Hsiung C C. Selected papers of Chuan-Chih Hsiung [C]. London: World Scientific, 2001: 264-284.
  • 3Li Anmin. A characterization of ellipsoids[J]. Results in Mathematics, 1991, 20: 657-659.
  • 4Zhu Pengbo, Wang Baofu. Some characterizations of locally strongly convex quadric[J]. J. Sichuan University (Natural Science), 2014, 51(2): 236-239.
  • 5WANG Bao-fu SHENG Li.A Note of the Hyperovaloid Characterization[J].Chinese Quarterly Journal of Mathematics,2013,28(2):202-205. 被引量:2
  • 6Alias L J, Colares A G. A further characterization of ellipsoids[J]. Results in Mathematics, 2005, 48: 1-8.

二级参考文献7

  • 1GARDING L. An inequality for hyperbolic polynomials[J). J Math Mech, 1959,8: 957-965.
  • 2HSIUNG C C, SHAHIN J K. Affine differential geometry of closed hypsrsurfacesj.I]. Proc London Math Soc, 1967,17: 715-735.
  • 3LI A M. A characterization of elllpsoidsj.l]. Results in Math, 1991, 20: 657-659.
  • 4MONTIEL S, ROS A. Compact hypersurfaces: the Alexandrov theorem for higher order mean curvature, differential geometry[J]. Pitman Monogr Surveys Pure Appl Math Loongman Sci Tech Harlow, 1991, 52: 279-297.
  • 5SIMON U. Mikowskische integralformeln und ihre anwendungen in der differential geometrie im Grofien[J]. Math Annalen, 1967, 173: 307?32l.
  • 6LI An-min, SIMON Udo, ZHAO Guo-song. Global affine differential geometry of hypersurfaces[J]. Walter de Gruytrt, Berlin-New York, 1993.
  • 7ALiAS L J, COLARES A G. A further characterization of ellipsoids[J]. Results Math, 2005, 48: 1-8.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部