期刊文献+

基于最小距离乘积K-means算法的改进 被引量:4

Improved K-means Algorithm Based on Min-Distance Product
下载PDF
导出
摘要 针对传统K-means算法因初始聚类中心的随机性而导致聚类结果产生很大的波动性问题,提出一种基于最小距离乘积聚类算法CAMDP(Clustering Algorithm based on Min-Distance Product),利用数次抽样技术,在得到的聚类中心集合上继续使用最小乘积法寻找最佳的初始聚类中心,较大程度减少了K-means聚类算法对初值选取的随机性。实验结果表明:改进后的K-means算法既考虑了网络结构的拓扑信息,又考虑了节点的属性特征,为社区划分提供了有力的决策支持。 Traditional K-means algorithm of the initial clustering center is randomly generated,which can lead to produce very big volatility clustering results. In order to solve this problem,We propose a algorithm named clustering algorithm based on min-distance Product. With the method of sampling,CAMDP( Clustering Algorithm based on Min-Distance Product) produces selected point which has minimum product of distances between itself and all other initialized clustering centers,which improves the selecting of the initial value of the K-means algorithm,avoiding the random selected clustering centers. The results show that the topological feature is considered and the attributes of vertex are taken into account,which let the improved K-means provide the strong support to the division of community.
出处 《吉林大学学报(信息科学版)》 CAS 2015年第5期564-569,共6页 Journal of Jilin University(Information Science Edition)
基金 国家青年自然科学基金资助项目(61300145)
关键词 社区结构 聚类 社会关系 聚类中心 community structure clustering social relations clustering centers
  • 相关文献

参考文献10

  • 1KERNIGHAN B W, LIN S. An Efficient Heuristic Procedure for Partitioning Graphs [ J ]. Bell Sys Teeh J, 1970, 49 (2) : 291-308.
  • 2BARNES E R. An Algorithm for Partitioning the Nodes of a Graph [J]. SIAM J Alg Discr Meth, 1982, 4(3) : 541-555.
  • 3GIRVAN M, NEWMAN M E J. Community Structure in Social and Biological Networks [ J ]. PNAS, 2001, 99(12) : 7821-7826.
  • 4蔡君,余顺争.基于随机聚类采样算法的复杂网络社团探测[J].计算机应用研究,2013,30(12):3560-3563. 被引量:4
  • 5ANIL K J. Data Clustering: 50 Years Beyond K-Means [ J ]. Pattern Recognition Letters, 2010, 31 (8) : 651-666.
  • 6韩家炜,MICHELINEKAMBER.数据挖掘概念与技术[M].北京:机械工业出版社,2007.
  • 7王英,王鑫,左万利.基于社会学理论的信任关系预测模型[J].软件学报,2014,25(12):2893-2904. 被引量:11
  • 8LESKOVEC J, HUTI'ENLOCHER D, KLEINBERG J. Signed Networks in Social Media [ C ] // Proc of the SIGCHI Conf on Human Factors in Computing Systems. Atlanta: Association for Computing Machinery, 2010: 1361-1370.
  • 9MAYAYISE T, OLUSEC, UN O I. E-Commerce Assurance Models and Trustworthiness Issues: An Empirical Study [ J ]. Journal of Information Management & Computer Security, 2014, 22( 1 ) : 76-96.
  • 10ALOISE D, DESHPANDE A, HANSEN P, et al. NP-Hardness of Euclidean Sum-of-Squares Clustering [ J ]. Machine Learning, 2009, 75 (2) : 245-248.

二级参考文献50

  • 1PORTER M A,ONNELA J P,MUCHA P J.Communities in networks[J].Notices of the AMS,2009,56(9):1082-1097.
  • 2POTHEN A,SIMON H D,LIOU K P.Partitioning sparse matrices witheigenvectors of graphs[J].SIAM Jounal Matrix Analysis Applica-tions,1990,11 (3):430-452.
  • 3CAPOCCI A,SERVEDIO V D P,CALDARELLI G,et al Detectingcommunities in large networks[J].Physical A,2005,352(2-4):669-676.
  • 4GIRVAN M,NEWMAN M E J.Community structure in social and bio-logical networks[J].Proceedings of the National Academy of Sci-ences of the United States of America,2002,99(12):7821-7826.
  • 5FORTUNATO S,LATORA VtMARCHIORI M.Method to find com-munity structures based on information centrality[J].Physical Re-view E,2004,70(5):0561041-05610413.
  • 6NEWMAN M E J.Fast algorithm for detecting community structure innetworks[J].Physica丨 Review E,2004,69(6):0661331-0661335.
  • 7GUIMERA R,AMARAL L.Functional cartography of complex meta-bolic networks[J].Nature,2005,433(7028):895-900.
  • 8SANTO F.Community detection in graphs[J].Physics Reports,2010,486(3-5):75-174.
  • 9LU Lin-yuan,JIN Ci-hang,ZHOU Tao.Similarity index based on localpaths for link prediction of complex network[J]. Physical ReviewE,2009'80(4):0461221-0461229.
  • 10KATZ L.A new status index derived from sociometric analysis[J].Psychometrika,1953,18(1):39-43.

共引文献13

同被引文献22

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部