期刊文献+

社会网络数据的可视化 被引量:6

Data Visualization for Social Network
下载PDF
导出
摘要 为直观地分析社会群体网络,观测社会群体行为,提出了社交网络数据的可视化分析方法。该方法将社会关系网络描绘成由点和线组成的图,再对图形中的节点分布位置、节点的大小以及点线密度等进行有效分析。运用在线社会网络数据可视化分析技术,结合python可视化与python科学计算技术,增强了网站的吸附性,获得了较好的用户体验。 In order to analyze the social group network visually,and to make accurate observation of the social group behavior,the social network analysis method named social network data visualization is presented. The social relation network was described as composed of point and line chart. Moreover,we make effective analysis to the node distribution location,the size of the graphics and dotted line density. Using the online visualization analysis technology for social network data, combined with the python visualization and python scientific computing technology,the system enhances the adsorption of websites,and it has gained a good user experience.
出处 《吉林大学学报(信息科学版)》 CAS 2015年第5期584-587,共4页 Journal of Jilin University(Information Science Edition)
基金 国家青年自然科学基金资助项目(61300145)
关键词 社交网络 数据可视化 社会群体行为 python科学计算 social network data visualization social group behavior python scientific computation
  • 相关文献

参考文献10

  • 1HIDALGO C. Big Data Visualization Engines for Understanding the Development of Countries, Social networks, Culture and Cities [ C]//Proceedings of the 25th ACM Cnnference on Hypertext and Social Media. New York: ACM, 2014: 3.
  • 2STOLPER C D, KAHNG M, LIN Z, et al. Glo-Stix: Graph-Level Operations for Specifying Techniques and Interactive Exploration [ J ]. Visualization and Computer Graphics, IEEE Transactions on, 2014, 20(12) : 2320-2328.
  • 3WAN H Y, LIN Y F, WU Z H. et al. Discovering Typed Communities in Mobile Social Networks [ J ]. Journal of Computer Science and Technology, 2012, 27 ( 3 ) : 480-491.
  • 4朱志良,林森,崔坤,于海.基于复杂网络社区划分的网络拓扑结构可视化布局算法[J].计算机辅助设计与图形学学报,2011,23(11):1808-1815. 被引量:25
  • 5水超,陈涛,李慧,陈国升.基于力导向模型的网络图自动布局算法综述[J].计算机工程与科学,2015,37(3):457-465. 被引量:15
  • 6NEWMAN M E J. Communities, Modules and Large-Scale Structure in Networks [J]. Nature Physics, 2012, 8( 1 ) : 25-31.
  • 7WU J, CHICLANA F. A Social Network Analysis Trust-Consensus Based Approach to Group Decision-Making Problems with Interval-Valued Fuzzy Reciprocal Preference Relations [ J]. Knowledge-Based Systems, 2014, 59( 1 ) : 97-107.
  • 8水超,陈洪辉,陈涛,李慧.力导向模型的复杂网络社区挖掘算法[J].国防科技大学学报,2014,36(4):163-168. 被引量:6
  • 9SOPAN A, NOH A S I, KAROL S, et al. Community Health Map: A Geospatial and Multivariate Data Visualization Tool for Public Health Datasets [ J ]. Government Information Quarterly, 2012, 29 (2) : 223-234.
  • 10HEER J, PERER A. Orion: A System for Modeling, Transformation and Visualization of Multidimensional Heterogeneous Networks [J]. Information Visualization, 2014, 13(2) : 111-133.

二级参考文献97

  • 1Carmel L, Harel D, Koren Y. Combining hierarchy and energy for drawing directed graphs [J]. IEEE Transactions on Visualization and Computer Graphics, 2004, 10(1): 46-57.
  • 2Kamada T, Kawai S. An algorithm for drawing general undirected graphs [J]. Information Processing Letters, 1989, 31(12) : 7-15.
  • 3Davidson R, Harel D. Drawing graphs nicely using simulated annealing[J]. ACM Transactions on Graphics, 1996, 15(4) : 301-331.
  • 4Fruchterman T M J, Reingold E M. Graph drawing by force-directed placement [J]. Software-Practice and Experience, 1991, 21(11): 1129-1164.
  • 5Ingber L. Very fast simulated re-annealing[J]. Mathematical and Computer Modelling, 1989, 12(8): 967-973.
  • 6Frick A, Ludwig A, Mehldau H. A fast adaptive layout algorithm for undirected graphs[M]//Lecture Notes in Computer Science. Heidelberg: Springer, 1995, 894:388- 403.
  • 7Noack A. An energy model for visual graph clustering [M]//Lecture Notes in Computer Science. Heidelberg: Springer, 2004, 2912:425-436.
  • 8Gajer P, Kobourov S G. GRIP: graph drawing with intelligent placement [M]//Lecture Notes in Computer Science. Heidelberg: Springer, 2001, 1984:104-109.
  • 9Harel D, Koren Y. A fast multi scale method for drawing large graphs [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2001, 1984:235-287.
  • 10Hachul S, Junger M. Drawing large graphs with a potential-field-based multilevel algorithm [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2005, 3383:285-295.

共引文献42

同被引文献51

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部