期刊文献+

一种证据不确定性度量方法及其应用 被引量:1

Uncertainty measure method of evidence and its application
下载PDF
导出
摘要 证据的冲突是导致证据理论融合结果不理想的重要因素,对证据冲突的处理一直是证据理论中要解决的关键问题。通过对多义度、不一致度和非特异度进行线性组合,提出一种新的证据不确定性度量方法。新方法能够更全面地涵盖证据体中所包含的不一致和非特异性两类不确定信息,使得证据不确定性度量结果所包含的信息更为完整。在此基础上,采用指数函数构造权重,对证据体进行预处理,然后采用DST、PCR2和PCR5进行融合。算例结果表明融合结果合理,新的证据不确定性度量方法有效。 Conflict of evidence is one of the most important factor which leads to the fusion result of evidence theory unsatis- factory. Thus the evidence conflict has been the key issue to be solved in evidence theory. By using a linear combination of ambiguity measure, discord measure and nonspecificity measure, a new uncertainty measurement method of evidence is presented. The new method covers uncertainty information more fully of discord and nonspecificity which are included in the body of evidence. This method makes the information more complete in the result of uncertainty measure. Based on the new method, an exponential function is used to construct weights, and the body of evidence is preprocessed. Finally, Dempster-shafer theory, proportional conflict redistribution 2 and proportional conflict redistribution 5 are used to fuse the preprocessing evidences. Numerical examples show that the fusion results are reasonable, and then the new uncertainty measurement method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第23期48-53,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61201118) 中国博士后科学基金(No.2013M532020) 陕西省教育厅科研计划项目(No.15JK1291) 西安工程大学研究生创新基金(No.chx131123)
关键词 不确定度 证据理论 多义度 冲突 非特异性 信息融合 uncertainty measure evidence theory ambiguity measure discord nonspecificity information fusion
  • 相关文献

参考文献2

二级参考文献33

  • 1Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1967.
  • 2Zadeh L A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[ J]. AI magazine,1986,2(7) : 85-90.
  • 3Yager R R. On the Dempster-Shafer framework and new combination rules [ J ]. Information Science, 1987,41 ( 2 ) : 93 - 137.
  • 4Yamada K. A new combination of evidence based on com- promise[ J]. Fuzzy Sets and Systerns,2008,159( 13 ) : 1689 - 1708.
  • 5Lefevre E, Colot O, Vannoorenberghe P. Belief functions combination and conflict management [ J ]. Information Fu- sion,2002,3(2) :149 - 162.
  • 6Han D Q, Han C Z, Yang Y. A modified evidence combi- nation approach based on ambiguity measure Proceedings of the l lth International Conference on Information Fusion [ C]. Cologne, Germany,2008,1346 - 1351.
  • 7Torra V, Narukawa Y, Inuiguchi M, et al. Modeling Deci- sions for Artificial Intelligence,2009,5861 : 217 - 230.
  • 8Murphy C K. Combining belief functions when evidence conflicts [ J ]. Decision Support Systems, 2000,29 ( 1 ) : 1 - 9.
  • 9Deng Y, Shi W K, Zhu Z F, et al. Combining belief func- tions based on distance of evidence [ J ]. Decision Support Systems ,2004,38(3 ) :489 -493.
  • 10Jousselme A L, Liu C S, Grenier D, et al. Measuring am- biguity in the evidence theory [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A ,2006,36(5 ) :890- 903.

共引文献63

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部