期刊文献+

基于贝叶斯和谐度的特征选择算法 被引量:3

Feature selection algorithm using Bayesian harmony measures
下载PDF
导出
摘要 特征选择是高维数据降维的一种关键技术。传统数据降维技术如PCA,只是转化数据的表达形式,不能表达数据的相关程度。近年来提出信息度量方法,使用评价函数表示数据的不确定性程度,虽然能较好地体现数据之间的相关程度,但并没有充分考虑选取的特征对整个样本空间的影响。针对传统方法的不足,提出一种基于贝叶斯和谐度特征选择算法。贝叶斯和谐度来自贝叶斯阴阳和谐学习理论,可以估计整个数据空间的联合概率分布,选取的特征能够较好地反应整个样本空间的变化。根据和谐度的变化来度量类之间的相似度从而得到冗余度较低的特征组合。与传统方法如ReliefF、FCBF等比较后发现,在取同样特征个数的情况下,和谐度度量得到的特征组合对数据分类更有效。 Feature selection is a key technique for the dimension reduction in high-dimensional data mining. Traditional data dimension reduction techniques such as PCA which just converts the expression of the dataset cannot reflect the rele- vant degree within the dataset. In order to select the optimal combination of features, an information measure is commonly used in the process of feature selection by the computation of the uncertain degree of the dataset. The choice of metric function in this method determines the feature subsets. Compared with the method using information entropy, a feature selection algorithm based on Bayesian harmony measure is presented in this paper. The increase in the harmony degree is used to measure the relevant degree within the selected features. The Bayesian harmony measure is introduced from the Bayesian Ying-Yang harmony learning theory, which can estimate the joint distribution of the input space. The similarity between two classes can be estimated by the change of Bayesian harmony. At the same time it can obtain the low redun- dancy feature combination by computing the harmony degree amplification in the entire system. Compared with traditional methods such as ReliefF and FCBF, the method has better performance in the case of selecting the same number of features.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第23期125-130,共6页 Computer Engineering and Applications
基金 科技部国际科技合作专项(No.2013DFG12810) 国家自然科学基金(No.61175026) 国家"十二五"科技支撑计划项目(No.2012BAF12B11) 浙江省自然科学基金重大项目(No.D1080807) 浙江省国际科技合作专项(No.2013C24027)
关键词 特征选择 filter方法 贝叶斯和谐度 降维 feature selection filter method Bayesian harmony measure dimension reduction
  • 相关文献

参考文献1

二级参考文献95

  • 1Xu L. Bayesian Ying-Yang system,best harmony learning,and five action circling.A special issue on Emerging Themes on Information Theory and Bayesian Approach[J].Frontiers of Electrical and Electronic Engineering in China,2010,(03):281-328.
  • 2Xu L. Bayesian-Kullback coupled YING-YANG machines:Unified learning and new results on vector quantization[A].Cambridge,MA:The MIT Press,.
  • 3Xn L. Codimensional matrix pairing perspective of BYY harmony learning:Hierarchy of bilinear systems,joint decomposition of data-covariance,and applications of network biology.A special issue on Machine Learning and Intelligence Science,1ScIDE2010 (A)[J].Frontiers of Electrical and Electronic Engineering in China,2011,(l):86-119.
  • 4Xu L. Advances on BYY harmony learning:Information theoretic perspective,generalized projection geometry,and independent factor autodeternination[J].IEEE Transactions on Neural Networks,2004,(04):885-902.
  • 5Xu L. Temporal BYY encoding,Markovian state spaces,and space dimension determination[J].IEEE Transactions on Neural Networks,2004,(05):1276-1295.
  • 6Xu L. Bayesian Ying Yang system,best harmony learning,and Gaussian manifold based family[A].2008.48-78.
  • 7Shi L,Tu S K,Xu L. Learning Gaussian mixture with automatic model selection:A comparative study on three Bayesian related approaches.A special issue on Machine Learuing and Intelligence Science:IScIDE2010 (B)[J].Frontiers of Electrical and Electronic Engineering in China,2011,(02):215-244.
  • 8Shore J. Minimum cross-entropy spectral analysis[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1981,(02):230-237.
  • 9Burg J P,Luenberger D G,Wenger D L. Estimation of structured covariance matrices[J].Proceedings of the IEEE,1982,(09):963-974.
  • 10Jaynes E T. Information theory and statistical mechanics[J].Physical Review,1957,(04):620-630.

共引文献3

同被引文献28

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部