期刊文献+

位置和速度受限的微型无人直升机轨迹跟踪控制器 被引量:1

Trajectory tracking controller for miniature unmanned helicopters with position and velocity constrains
下载PDF
导出
摘要 针对微型无人直升机在狭窄空间中的轨迹跟踪问题,设计了一种可以限制直升机位置和速度的跟踪控制器.首先将直升机的模型简化为一个未建模的动态模型.基于简化模型利用受限反步法设计控制器,其中在位置控制回路用障碍李雅普诺夫函数代替传统的纯二次型李雅普诺夫函数,以此来限制直升机的位置和速度;用指令滤波器对反步过程中虚拟控制的导数进行估计,避免了复杂的解析计算.此外,将未建模动态和指令滤波器误差合并成有界扰动项,并设计了自适应算法对扰动的上界进行估计和补偿.稳定性分析证明了直升机的闭环跟踪误差最终一致有界,且位置和速度始终位于预设的限制集合中.仿真结果验证了该控制器的有效性. A trajectory tracking controller with position and velocity constraints is developed for miniature unmanned helicopters flying in narrow space. The helicopter model is firstly simplified to one with unmolded dynamics. Based on this model, the constrained backstepping technique is applied to design the controller, in which the barrier Lyapunov functions,instead of traditional pure quadratic Lyapunov functions, are introduced to the position control loop for maintaining the position and velocity constraints. Command filters are utilized to estimate derivatives of the virtual controls during the backstepping progress such that complex analytical calculations can be avoided. Furthermore, upper bounds of the disturbances due to the unmodeled dynamics and command filter errors are estimated and compensated with adaptive algorithms.The stability analysis shows that tracking errors of the closed-loop helicopter system are ultimately uniformly bounded and its position and velocity are restricted in the prescribed sets during the tracking progress. Simulation results validate the effectiveness of the proposed controller.
作者 邹尧 霍伟
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第10期1316-1324,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61074010)资助~~
关键词 微型无人直升机 轨迹跟踪 位置和速度受限 反步法 障碍李雅普诺夫函数 指令滤波器 miniature unmanned helicopters trajectory tracking constrained position and velocity backstepping barrier Lyapunov functions command filter
  • 相关文献

参考文献26

  • 1ZHU B, HUO W. Adaptive backstepping control for a miniature au- tonomous helicopter [C]//Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA: IEEE, 2011:5413 -5418.
  • 2孙秀云,方勇纯,孙宁.小型无人直升机的姿态与高度自适应反步控制[J].控制理论与应用,2012,29(3):381-388. 被引量:29
  • 3Xian Bin,Guo Jianchuan,Zhang Yao,Zhao Bo.Sliding mode tracking control for miniature unmanned helicopters[J].Chinese Journal of Aeronautics,2015,28(1):277-284. 被引量:10
  • 4XU R, OZGUNER U. Sliding mode control of a quadrotor heli- copter [C]//Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, USA: IEEE, 2006:13 - 15.
  • 5NODLAND D, ZARGARZADEH H, JAGANNATHAN S, et al. Neural network-based optimal adaptive output feedback control of a helicopter UAV [J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1061 - 1073.
  • 6RAAFAT S M, AKMELIAWATI R. Robust disturbance rejection control of helicopter system using intelligent identification of uncer- tainties [J]. Procedia Engineering, 2012, 41(3): 120 - 126.
  • 7LIU C J, CHEN W H, ANDREWS J. Tracjing control of a small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers [J]. Control Engineering Practice, 2012, 20(3): 258 - 268.
  • 8蒋沅,曾令武,代冀阳.一类非线性直升机模型的滑模降阶控制器设计[J].控制理论与应用,2013,30(3):330-338. 被引量:9
  • 9HADDAD W M, CHELLABOINA V. Nonlinear Dynamical Systems and Control [M]. New Jersey, USA: Priceton University Press, 2008.
  • 10ROBERTS A, TAYEBI A. Adaptive position tracking of VTOL UAVs [J]. IEEE Transaction on Robotics, 2011, 27(1): 129 - 142.

二级参考文献24

  • 1宋彦国,张呈林.小型无人直升机模糊飞行控制系统设计[J].南京航空航天大学学报,2007,39(1):103-106. 被引量:6
  • 2方敏,汪洪波,陈无畏.汽车主动悬架系统H_∞控制器的降阶[J].控制理论与应用,2007,24(4):553-560. 被引量:14
  • 3GHAFOOR A, SREERAM V. Frequency weighted balanced model reduction: a survey [C]//The 9th International Conference on Con- trol, Automation, Robtics and Vision. Singapore: IEEE, 2006:1 - 6.
  • 4HOULIS P, SREERAM V. A parametrized controller reduction tech- nique via a new frequency weighted model reduction formu!ation [J]. IEEE Transactions on Automatic Control, 2009, 54(5): 1087 - 1093.
  • 5ABBAS H S, WERNER H. Frequency-weighted discrete-time LPV model reduction using structurally balanced truncation [J]. IEEE Transaction on Control Systems Technology, 2011, 19(1): 140- 147.
  • 6LI B, BAO L, LIN Y Q, et al. Model-order reduction of kth order MIMO dynamical systems using block kth krylov subspaces [J]. In- ternational Journal of Computer Mathematics, 2011, 88(1): 150 - 162.
  • 7BREITHEN T, DAMM T. Krylov subspace methods for model order reduction of bilinear control systems [J]. Systems & Control Letters, 2010, 59(8): 443 -450.
  • 8SANDBERG H, MURRAY R M. Model reduction of interconnected linear systems [J]. Optimal Control Application and Method, 2009, 30(3): 225 - 245.
  • 9LI L, PETERSEN I R. A gramian-based approach to model reduc- tion for uncertain system [J]. IEEE Transaction on Automatic Con- trol, 2010, 55(2): 508 -514.
  • 10ASTOLFI A. Model reduction by moment matching for linear and nonlinear systems [J]. IEEE Transaction on Automatic Control, 2010, 55(10): 2321 - 2335.

共引文献42

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部