期刊文献+

小型四旋翼无人机建模与有限时间控制 被引量:29

Modeling and finite-time control for quad-rotor mini unmanned aerial vehicles
下载PDF
导出
摘要 本文首先介绍了一种小型四旋翼无人机的设计过程,从机架设计、动力匹配、机载控制器、传感器、无线通信等多个方面进行了较为详尽的阐述.采用牛顿―欧拉法对四旋翼无人机进行动力学分析,完成了六自由度数学模型的推导.进一步对系统的模型参数进行了测量和计算,并给出了结果.在此基础上,为了满足无人机快速跟踪性能的要求,本文基于快速终端滑模的思想,进行了闭环控制器的设计,并给出了基于Lyapunov函数的稳定性证明.控制器采用分环控制的结构形式,内环为姿态控制,外环为位置控制.最后结合设计的四旋翼无人机,给出的仿真结果验证了控制算法的有效性. We start by giving the detailed design process for a quad-rotor mini unmanned aerial vehicle, including the airframe design, propulsion system, autopilot, sensors and wireless communication. By using Newton-Euler's laws, we analyze the dynamics of such an aerial vehicle to derive for it a 6-degrees mathematical model with parameter values measured and calculated. To meet the requirement on fast tracking performance, we develop a closed-loop control system based on the concept of fast terminal sliding-mode control, and prove its stability by using Lyapunov function. This control system is composed of two nested control loops: the inner loop for the attitude control and the outer loop for the position control. Simulation results show that the proposed method can provide robustness and good tracking performance for the designed quad-rotor mini unmanned aerial vehicle.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第10期1343-1350,共8页 Control Theory & Applications
基金 国家"863"高技术计划项目(2013AA122602) 天津市应用基础及前沿技术研究计划项目(11JCZDJC25100)资助~~
关键词 四旋翼无人机 快速终端滑模控制 有限时间控制 quadrotor fast terminal sliding mode control finite-time control
  • 相关文献

参考文献21

  • 1HOFFMANN G M, WASLANDER S L, VITUS M P, el al. Stanford testbed of autonomous rotorcraft for multi-agent control [C] //Pro- ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009:404 - 405.
  • 2BOUABDALLAH S, MURRIERI R SIEGWART R. Towards au- tonomous indoor micro VTOL [J]. Autonomous Robots, 2012, 18(2): 171 - 183.
  • 3MICHAEL N, MELLINGER D, LINDSEY Q, et al. The GRASP multiple micro-UAV testbed [J]. IEEE Robotics and Automation Magazine, 2010, 17(3): 56 - 65.
  • 4LUPASHIN S, SCHOLLIG A, SHERBACK M, et al. A simple learn- ing strategy for high-speed quadrotor multi-flips [C] //Proceedings qf International Conference on Robotics and Automation. Anchorage, Alaska, USA: IEEE. 2010: 1642- 1648.
  • 5HEHN M. D' ANDREA R. A flying inverted pendulum [C] //Pro- ceedings of International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 763 - 770.
  • 6汪绍华,杨莹.基于卡尔曼滤波的四旋翼飞行器姿态估计和控制算法研究(英文)[J].控制理论与应用,2013,30(9):1109-1115. 被引量:41
  • 7SCHREIER M. DARMSTADT T. Modeling and adaptive control of a quadrotor [C]//Proceedings of International Conference on Mecha- tronics and Automation. Chengdu, China: IEEE, 2012:383 - 390.
  • 8ISLAM S, LIU P X, SADDIK A E. Robust control of four-rotor un- manned aerial vehicle with disturbance uncertainty [J]. IEEE Trans- actions on hutustrial Electronics, 2015, 62(3): 1563 - 1571.
  • 9BESNARD L, SHTESSEL Y B, LANDRUM B. Quadrotor vehicle control via sliding mode controller driven by sliding mode distur- bance observer [J]. Journal of the Franklin Institute, 2012, 349(2): 658 - 684.
  • 10杨荟憭,姜斌,张柯.四旋翼直升机姿态系统的直接自修复控制[J].控制理论与应用,2014,31(8):1053-1060. 被引量:24

二级参考文献18

  • 1耿淼,姜斌,郭玉英,杨浩.执行器故障参数不可测飞行系统的模型跟踪重构控制[J].东南大学学报(自然科学版),2009,39(S1):177-182. 被引量:2
  • 2HOFFMANN E GODDEMEIER N, BERTRAM T. Attitude estima- tion and control of a quadrocopter [C]//The 2010 IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 1072- 1077.
  • 3KENDOUL F, NONAMI K. A visual navigation system for au- tonomous flight of micro air vehicles [C]//The 2009 IEEE/RSJ Inter- national Conference on Intelligent Robots and Systems. Louis, USA: IEEE, 2009:3888 - 3893.
  • 4BOUCHOUCHA M, TADJINE M, TAYEBI A, et al. Backstepping based nonlinear PI for attitude stabilisafion of a quadrotor: from the- ory to experiment [C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008:4183.
  • 5Crossbow. Measurement of a vehicle's dynamic motion combine angular rate sensors with accelerometers [OL]. http://www.moog- crossbow.com/Literature/Application_N of_Vehicle% 27 s _Dynaraic_Motions.pdf.
  • 6PETKOV P, SLAVOV T. Stochastic modeling of MEMS inertial sen- sors [J]. Bulgarian Academy of Sciences: Cybernetics and Informa- tion Technologies, 2010, 10(2): 31 - 40.
  • 7VAIBHAV S, RANA S C, KUBER M M. Online estimation of state space error model for MEMS IMU [J]. Journal of Modelling and Sim- ulation of Systems, 2010, 1(4): 219 - 225.
  • 8HUAM1NG Q, QUANXI X, BO J, et al. On modeling of random drift of MEMS gyroscope and design of Kalman filter [C] //Proceedings of the 2009 IEEE International Conference on Mechatronic-" and Au- tomation. Changchun, China: IEEE, 2009.
  • 9ARNOLD M, MILNER X H R, WITTE H, et al. Adaptive AR modeling of nonstationary time series by means of Kalman filtering [J]. IEEE Transactions on Biomedical Engineering, 1998, 45(5): 553 - 562.
  • 10WU X, DUAN L, CHEN W. A Kalman filter approach based on random drift data of fiber optic gyro [C]//The 6th IEEE Conference on Industrial Electronics and Applications. Beijing, China: IEEE, 2011.

共引文献61

同被引文献157

引证文献29

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部