期刊文献+

一种拥有超大负色散的双芯光子晶体光纤 被引量:2

Dual Core Photonic Crystal Fiber with Large Negative Dispersion
原文传递
导出
摘要 针对目前广泛使用的G.652光纤中存在的色散问题,设计了一种圆形结构的双芯色散补偿型光子晶体光纤,并运用COMSOL Multiphysics 4.4对其进行仿真模拟。研究表明,当空气孔孔径d增大时,色散的最小值会向长波长区移动,同时最小色散值的绝对值会逐渐增大;当层与层间距Λ增大时,色散的最小值会向长波长区移动,但是最小色散值的绝对值会逐渐减小;当填充液体折射率nL增大时,色散的最小值会向短波长区移动,同时最小色散值的绝对值会逐渐增大。当d=1.140μm,Λ=1.500μm,nL=1.350时,在传输波长1 550nm处可以得到大约-17 000ps/(nm·km)的大负色散值,可以对相当于自身长度850倍的G.652单模光纤进行色散补偿。 In order to solve the problem of dispersion in G.652,a dual core PCF with large negative dispersion was proposed.The results are that with the increase of air-hole diameter(d),the minimum value of dispersion moves to long wavelength with an augment of the absolute value;with the increase of layer-tolayer spacing(Λ),the minimum value of dispersion moves to long wavelength with a decrease of the absolute value and with the increase of refractive index of the infiltrating liquid(nL),the minimum value of dispersion moves to short wavelength and the absolute value increases,which were obtained based on COMSOL Multiphysics 4.4.The results show a high negative dispersion of-17 000 ps/(nm·km)around 1 550 nm when d=1.140μm,Λ=1.500μm and nL=1.350,which means that the DCF length in1 meter can compensate the total dispersion of the G.652 length in 850 meters.
出处 《量子光学学报》 北大核心 2015年第4期380-384,共5页 Journal of Quantum Optics
基金 苏州大学现代光学技术研究所江苏省重点实验室开放课题(NO.KJS1405)
关键词 信息光学 色散补偿 光子晶体光纤 负色散系数 Information Optics Dispersion compensation Photonic crystal fiber Negative dispersion coefficient
  • 相关文献

参考文献10

  • 1H echt J. City of Light:The Story of Fiber Optics[ M]. Oxford University Press, 2004 : 131-146.
  • 2Sabapathi T, Gowri Manohari R. Analysis and Compensation of Polarization Mode Dispersion in Single Channel, WDM and 32-Channel DWDM Fiber Optic System[J]. Optik, 2014,125 ( 1 ) : 18-24.
  • 3Samiul Habib M, Ahmad R, Selim Habib M, et al. Design of Single Polarization Single Mode Dispersion Compensating Photonic Crystal Fiber[J]. Optik, 2014,125 (16) : 4313-4318.
  • 4Selim Habib M, Samiul Habib M, Abdur Razzak S M, et al. Proposal for Highly Birefringent Broadband Dispersion Compensating Octagonal Photonic Crystal Fiber[J]. Optical Fiber Technology, 2013,19 ( 5 ) : 461-467.
  • 5张立超,侯蓝田,周桂耀.八边形光子晶体光纤色散补偿特性分析[J].物理学报,2011,60(5):409-414. 被引量:6
  • 6Monfared Y E, Mojtahedinia S A. Highly Birefrigent Photonic Crystal Fiber with High Negative Dispersion for Broadband Dispersion Compensation[J]. Optik, 2014,125 (20 ) : 5969- 5972.
  • 7Uranus H P, Hoekstra H J W M. Modelling of Microstructured Waveguides Using a Finite-Element-Based Vectorial Mode Solver with Transparent Boundary Conditions[J]. Optics Express, 2004,12 ( 12 ) : 2795-2809.
  • 8Uranus H P, Hoekstra H J W M, Van Groesen E. Galerkin Finite Element Scheme with Bayliss-Gunzburger-Turkel-Like Boundary Conditions for Vectorial Optical Mode Solver[J]. Journal of Nonlinear Optical Physics and Materials, 2004, 13(2) :175-194.
  • 9Saitoh K, Koshiba M. Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonie Crystal Fibers[J]. IEEE Journal of Quantum Electronics, 2002,38 ( 7 ) : 927-933.
  • 10Saitoh, K. Koshiba. M Full-Vectorial Finite Element Beam Propagation Method with Perfectly Matched Layers for Anisotropic Optical Waveguides[J]. Journal of Lightwave Technology, 2001,19 ( 3 ) : 405-413.

二级参考文献5

共引文献5

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部