期刊文献+

High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature 被引量:1

原文传递
导出
摘要 We report high-efficiency CdTe/CdS core/shell nanocrystals synthesized in water by epitaxially growing CdS shells on aqueous CdTe cores at room temperature, enabled by the controlled release of S species under low-intensity ultraviolet (UV) light illumination. The resulting photo-induced dissociation of S2O2- ions conveniently triggers the formation of critical two-dimensional CdS epitaxy on the CdTe surface at room temperature, as opposed to initiating the growth of individual CdS core-only nanocrystals. This controlled colloidal hetero-epitaxy leads to a substantial increase in the photoluminescence (PL) quantum yield (QY) of the shelled nanocrystals in water (reaching 64%). With a systematic set of studies, the maximum PL QY is found to be almost independent of the illuminating UV intensity, while the shell formation kinetics required for reaching the maximum QY linearly depends on the illuminating UV intensity. A stability study of the QD films in air at various temperatures shows highly improved thermal stability of the shelled QDs (up to 120 ℃ in ambient air). These results indicate that the proposed aqueous CdTe/CdS core/shell nanocrystals hold great promise for applications requiring efficiency and stability.
出处 《Nano Research》 SCIE CAS CSCD 2015年第7期2317-2328,共12页 纳米研究(英文版)
分类号 O [理学]
  • 引文网络
  • 相关文献

参考文献49

  • 1Chen, Y. Y.; Liang, H. Applications of quantum dots with upconverting luminescence in bioimaging. J. Photochem. Photobiol. B 2014, 135, 23-32.
  • 2Sun, P.; Zhang, H. Y.; Liu, C.; Fang, J.; Wang, M.; Chen, J.; Zhang, J. P.; Mao, C. B.; Xu, S. K. Preparation and characterization of Fe3Oa/CdTe magnetic/fluorescent nano- composites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 2010, 26, 1278-1284.
  • 3Park, J. Y.; Advincula, R. C. Tunable electroluminescence properties in CdSe/PVK guest-host based light-emitting devices. Phys. Chem. Chem. Phys. 2014, 16, 8589-8593.
  • 4Lee, K. H.; Lee, J. H.; Song, W. S.; Ko, H.; Lee, C.; Lee, J. H.; Yang, H. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 2013, 7, 7295-7302.
  • 5Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey, J.; Feng, Y.; Charbonneau, S. Red-emitting semiconductor quantum dot lasers. Science 1996, 274, 1350-1353.
  • 6Lan, G. ~.; Yang, Z.; Lin, Y. W.; Lin, Z. H.; Liao, H. Y.; Chang, H. T. A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells. J. Mater. Chem. 2009, 19, 2349-2355.
  • 7Zhu, H. M.; Yang, Y.; Lian, T. Q. Multiexciton annihilation and dissociation in quantum confined semiconductornanocrystals. Acc. Chem. Res. 2013, 46, 1270-1279.
  • 8Green, M. Semiconductor quantum dots as biological imaging agents. Angew. Chem. lnt. Ed. 2004, 43, 4129-4131.
  • 9Coe-Sullivan, S.; Woo, W. K.; Steckel, J. S.; Bawendi, M.; Bulovi6, V. Tuning the performance of hybrid organic/ inorganic quantum dot light-emitting devices. Org. Electron. 2003, 4, 123-130.
  • 10Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovi6, V. Emergence of colloidal quantum-dot light-emitting tech- nologies. Nat. Photonics 2012, 7, 13-23.

同被引文献2

引证文献1

相关主题

;
使用帮助 返回顶部