期刊文献+

Achieving large transport bandgaps in bilayer graphene 被引量:2

Achieving large transport bandgaps in bilayer graphene
原文传递
导出
摘要 Since opening sizable bandgaps in bilayer graphene (BLG) was proven possible, BLG has attracted considerable attention as a promising high-mobility candidate material for many electronic and optoelectronic applications. However, the bandgaps observed in the transport experiments reported in the literature are far smaller than both the theoretical predictions and the bandgaps extracted from optical measurements. In this study, we investigate the factors preventing the formation of large bandgaps and demonstrate that a -200-meV transport bandgap can be opened in BLG by scaling the gate dielectric and employing a ribbon channel to suppress the percolative transport. This is the largest transport bandgap that has been achieved in BLG to date. 因为在 bilayer graphene (BLG ) 的开的相当大的 bandgaps 被证明可能, BLG 为电子的许多和 optoelectronic 应用作为有希望的高活动性的候选人材料吸引了可观的注意。然而,在实验在文学报导了的运输观察的 bandgaps 比从光大小提取的理论预言和 bandgaps 远小。在这研究,我们调查阻止大 bandgaps 的形成的因素并且证明 ~200 兆电子伏运输 bandgap 能被放大门电介质并且采用一条带子隧道压制 percolative 运输在 BLG 打开。这是迄今为止在 BLG 被完成了的最大的运输 bandgap。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第10期3228-3236,共9页 纳米研究(英文版)
关键词 bilayer graphene transport bandgap PERCOLATION on/off ratios 运输带 石墨 BLG 光电应用 光学测量 理论预测 形成因素 带隙
  • 相关文献

参考文献24

  • 1Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666-669.
  • 2Min, H.; Sahu, B. R.; Banerjee, S. K.; Macdonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 2007, 75, 155115.
  • 3Mccann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.
  • 4Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.
  • 5Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science. 2006, 313, 951-954.
  • 6Zhang, Y. B.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.
  • 7Zhang, L. M.; Li, Z. Q.; Basov, D. N.; Fogler, M. M.; Hao, Z.; Martin, M. C. Determination of the electronic structure of bilayer graphene from infrared spectroscopy results. Phys. Rev. B 2008, 78, 235408.
  • 8Xia, F. N.; Farmer, D. B.; Lin, Y.-M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett.2010, 10, 715-718.
  • 9Yan, J.; Fuhrer, M. S. Charge transport in dual gated bilayer graphene with Corbino geometry. Nano Lett. 2010, 10, 4521-4525.
  • 10Taychatanapat, T.; Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 2010, 105, 166601.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部