期刊文献+

Room-temperature tracking of chiral recognition process at the single-molecule level

Room-temperature tracking of chiral recognition process at the single-molecule level
原文传递
导出
摘要 酞毒(Pc ) 的一个 chiral 识别过程的分子水平的鉴定被扫描通道显微镜学(STM ) 在 Cu (100 ) 表面上学习。STM 表明一个 chiral Pc 分子与另外的 Pc 分子形成一系列亚稳的更暗淡的配置。最后, Pc 分子与一样的 chirality 认出另一个 Pc 分子形成一种稳定的更暗淡的配置。Homochiral dimers 在 Cu 表面上被发现,表明 Pc dimerization 的 chiral 特性。为这个 chiral 识别过程的机制被识别,揭示 Cu 表面上的 chiral dimers 的特别吸附几何学的关键角色。 The molecular-level identification of a chiral recognition process of phthalocyanine (Pc) was studied on a Cu(100) surface by scanning tunneling microscopy (STM). STM revealed that a chiral Pc molecule forms a series of metastable dimer configurations with other Pc molecules. Eventually, the Pc molecule recognizes another Pc molecule with the same chirality to form a stable dimer configuration. Homochiral dimers were found on the Cu surface, demonstrating the chiral specificity of Pc dimerization. The mechanism for this chiral recognition process is identified, disclosing the critical role of the particular adsorption geometry of the chiral dimers on the Cu surface.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第11期3505-3511,共7页 纳米研究(英文版)
基金 Acknowledgements This work was supported by the National Basic Research Program of China (No. 2013CB934200) and the National Natural Science Foundation of China (Nos. 10979015 and 50976048). L. W. acknowledges the financial support from the Program for New Century Excellent Talents in University, Ministry of Education of the People's Republic of China (No. NECT-11-1003) and Jiangxi Provincial "Ganpo Talents 555 Projects". M. D. D. acknowledges financial support from the Danish National Research Foundation, the Carlsberg Foundation, and the Villum Foundation.
关键词 手性识别 分子水平 温度跟踪 扫描隧道显微镜 CU(100) 房间 二聚体 铜表面 chirality, recognition, scanning tunneling microscopy, dynamic process
  • 相关文献

参考文献22

  • 1Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201-341.
  • 2Vijayaraghavan, A.; Hennrich, F.; Stiirzl, N.; Engel, M.; Ganzhom, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M. et al. Toward single-chirality carbon nanotube device arrays. ACS Nano 2010,4, 2748-2754.
  • 3Speranza, M.; Rondino, F.; Satta, M.; Paladini, A.; Giardini, A.; Catone, D.; Piccirillo, S. Molecular and supramolecular chirality: R2PI spectroscopy as a tool for the gas-phase recognition of chiral systems of biological interest. Chirality2009,21, 119-144.
  • 4Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M. O.; De Feyter, S.; Tobe, Y. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 2011, 3, 714-719.
  • 5Raval, R. Chiral expression from molecular assemblies at metal surfaces: Insights from surface science techniques. Chem. Soc. Rev. 2009, 38, 707-721.
  • 6Ernst, K.-H. Supramolecular surface chirality. In Topics in Current Chemistry: Supramolecular Chirality, Springer Berlin: Heidelberg, 2006; pp 209-252.
  • 7Lingenfelder, M.; Tomba, G.; Costantini, G.; Ciacchi, L. C.; De Vita, A.; Kern, K. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem., Int. Ed. 2007, 46, 4492 -4495.
  • 8Mugarza, A.; Lorente, N.; Ordejon, P.; Krull, C.; Stepanow, S.; Bocquet, M.-L.; Fraxedas, J.; Ceballos, G.; Gambardella, P. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys. Rev. Lett. 2010,105, 115702.
  • 9Chen, F.; Chen, X.; Liu, L. C.; Song, X.; Liu, S. Y.; Liu, J.; Ouyang, H. P.; Cai, Y. X.; Liu, X. Q.; Pan, H. B.; et al. Chiral recognition of zinc phthalocyanine on Cu(100) surface. Appl. Phys. Lett. 2012, 100, 081602.
  • 10Fischer, E. Einfluss der configuration auf die wirkung der enzyme. Ber. Dtsch. Chem. Ges. 1894, 27, 2985-2993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部