摘要
Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R-H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R-H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O-O bond length of -1.45 A, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold.
分子的 O <sub>2</sub> 的激活是在催化黄金的氧化反应的最关键的步;然而,这个过程的内在的机制在争论下面留下。在这研究,我们用密度与包含氢的底层的帮助建议一条其他的 O <sub>2</sub> 激活小径功能的理论。这被表明共同吸附的包含 H 底层(RH ) 不仅提高 O <sub>2</sub>, 的吸附而且把一个氢原子转移到由它的转变导致 O <sub>2</sub> 激活到 hydroperoxyl (OOH ) 的邻近的 O <sub>2</sub>, 激进的种类。从 16 的H转移的激活障碍选择了 RH 混合物( H <sub>2</sub > O , CH <sub>3</sub >哦, NH <sub>2</sub > CHCOOH , CH <sub>3</sub > CH=CH <sub>2</sub>,( CH <sub>3</sub>)<sub>2</sub > SiH <sub>2</sub>,等等)到共同吸附的 O ,<sub>2</sub>是比在大多数情况中的 0.50 eV 低的,在温和条件下面经由 OOH 显示 O <sub>2</sub>的激活的可行性。形成的 OOH 氧化剂,与 ~ 的增加的 OO 契约长度 1.45 ? ,也通过在端点的氧原子在氧化反应直接参与,或分裂进原子氧和氢氧根(哦) 由穿过 0.24 eV 的一个相当低的精力障碍。把公司氧化用作一根探针,我们发现了 OOH 比激活的 O <sub>2</sub> 和原子氧举办优异活动。这研究为 O <sub>2</sub>, 的激活揭示一条新小径并且可以提供卓见进 nanosized 黄金的氧化催化作用。
基金
Acknowledgements This work was supported by the National Basic Research Program of China (No. 2011CB932400), the National Natural Science Foundation of China (No. 21543005), the China Postdoctoral Science Foundation (No. 2014M562391), and the Fundamental Research Funds for the Central Universities (No. xjj2014064). The calculations were performed by using supercomputers at the Computer Network Information Center, Chinese Academy of Sciences, Tsinghua National Laboratory for Information Science and Technology, and the Shanghai Supercomputing Center.