期刊文献+

Development of hydrophilicity gradient ultracentrifuga- tion method for photoluminescence investigation of separated non-sedimental carbon dots 被引量:5

原文传递
导出
摘要 Carbon nanodots (CDs) formed by hydrothermal dehydration occur as mixtures of differently sized nanoparticles with different degrees of carbonization. Common ultracentrifugation has failed in sorting them, owing to their extremely high colloidal stability. Here, we introduce an ultracentrifugation method using a hydrophilicity gradient to sort such non-sedimental CDs. CDs, synthesized from citric acid and ethylenediamine, were pre-treated by acetone to form clusters. Such clusters "de-clustered" as media comprising gradients of ethanol they were forced to sediment through and water with varied volume ratios. Primary CDs with varied sizes and degrees of carbonization detached from the clusters to become well dispersed in the corresponding gradient layers. Their settling level was highly dependent on the varied hydrophilicity and solubility of the environmental media. Thus, the proposed hydrophilicity-triggered sorting strategy could be used for other nanoparticles with extremely high colloidal stability, which further widens the range of sortable nanoparticles. Furthermore, according to careful analysis of the changes in size, composition, quantum yield, and transient fluorescence of typical CDs in the post-separation fractions, it was concluded that the photoluminescence of the as-prepared hydrothermal carbonized CDs mainly arose from the particles' surface molecular state rather than their sizes.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第9期2810-2821,共12页 纳米研究(英文版)
分类号 O [理学]
  • 相关文献

参考文献34

  • 1Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737.
  • 2Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 672~6744.
  • 3Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230-24253.
  • 4Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20-30.
  • 5Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging..Z Am. Chem Soc. 2007, 129, 11318-11319.
  • 6Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546-18551.
  • 7Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and pho- tocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430- 4434.
  • 8Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zheng, H. Z.; Huang, Y. M. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695-6697.
  • 9Choi, H.; Ko, S. J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J. W.; Choi, H. J.; Cha, M.; Jeong, J. R. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 2013, 7, 732-738.
  • 10Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. B.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.

同被引文献15

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部