期刊文献+

Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit 被引量:15

Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit
原文传递
导出
摘要 便携式、便携的电子设备的快速的发展为灵活、有效的精力收获和存储单位增加了需求。通常,这些作为分离部件独立被造并且使用。此处,我们建议雕刻的简单、划算的激光为制作一个灵活自我控告的 micro-supercapacitor 力量单位(SCMPU ) 的技术,由集成摩擦电, nanogenerator (TENG ) 和 micro-supercapacitor (MSC ) 穿进一台单个设备。SCMPU 能被周围的机械运动直接控告。我们表明 SCMPU 的能力连续地驱动轻射出的二极管和商业温湿计。这调查可以支持持续自我动力的系统的开发并且为 supercapacitors 提供一个有希望的新研究应用程序。 The rapid development of portable and wearable electronic devices has increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete components. Herein, we propose a simple and cost-effective laser engraving technique for fabricating a flexible self-charging micro-supercapacitor power unit (SCMPU), by integrating a triboelectric nanogenerator (TENG) and a micro-supercapacitor (MSC) array into a single device. The SCMPU can be charged directly by ambient mechanical motion. We demonstrate the ability of the SCMPU to continuously power light-emitting diodes and a commercial hygrothermograph. This inves- tigation may promote the development of sustainable self-powered systems and provide a promising new research application for supercapacitors.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第12期3934-3943,共10页 纳米研究(英文版)
关键词 超级电容器 充电电源 发电机 摩擦电 微型 纳米 集成 激光雕刻技术 energy harvesting,energy storage,triboelectric nanogenerator(TENG),micro-supercapacitor,self-charging
  • 相关文献

参考文献35

  • 1Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-864.
  • 2Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Sub, K.-Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222-226.
  • 3Ilievski, F.; Mazzeo, A. D.; Shepherd, R. E.; Chert, X.; Whitesides, G. M. Soft robotics for chemists. Angew. Chem., Int. Ed. 2011, 50, 1890-1895.
  • 4Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.
  • 5Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.
  • 6Lee, M.; Bae, J.; Lee, J.; Lee, C. S.; Hong, S.; Wang, Z. L. Self-powered environmental sensor system driven by nano- generators. Energy Environ. Sci. 2011, 4, 3359-3363.
  • 7Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Sub, K. Y. A flexible and highly sensitive strain- gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11,795-801.
  • 8Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.
  • 9Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102-105.
  • 10Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L. Hybridizing energy conversion and storage in a mechanical- to-electrochemical process for self-charging power cell. Nano Lett. 2012, 12, 5048-5054.

同被引文献94

引证文献15

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部