期刊文献+

精神障碍疾病的神经生理信号复杂度研究进展 被引量:3

Progress on complexity analysis of neurophysiological signals in mental disorders
原文传递
导出
摘要 研究表明,精神障碍疾病存在大脑“失连接”症状,相关的神经网络研究亦发现大脑活动在一定时间尺度上的非线性动力学复杂性。定量描述大脑活动复杂度的非线性分析方法为精神障碍疾病“异常神经元连接”的研究提供了新思路。综述了神经生理信号复杂度测量方法在精神障碍疾病中的应用结果及区别,其可能与精神障碍疾病的多相性、分析方法差异、病情发展及年龄因素有关。针对这些问题进行深入探索有助于进一步阐明精神障碍疾病异常脑连接和复杂度的变化机制。 Many studies have provided evidence that aberrant neural connectivity lies at the heart of many mental disorders. Information related to neural networks has elucidated the nonlinear dynamical complexity in brain signals over a range of temporal scales. The advent of nonlinear analytic methods, which have served for the quantitative description of the brain signal complexity, has provided new insights into aberrant neural connectivity in many mental disorders. This paper reviewed the complexity application of neurophysiological signals in mental disorders, and got some valuable results and inconsistence, which might resulted from the heterogeneity in mental disorders, analytical methods, interference of typical development and aging. Future systematic studies addressing these issues may help to elucidate the mechanism of neural connections and dynamics related to mental disorders.
出处 《国际生物医学工程杂志》 CAS 2015年第5期310-313,I0002,共5页 International Journal of Biomedical Engineering
基金 天津市卫计委科技攻关项目(13KG109,14KG107):天津市中医药管理局中医、中西医结合科研专项资助项目(13129)
关键词 神经生理信号 复杂度 阿尔兹海默症 精神分裂症 心境障碍 Neurophysiological signal Complexity Alzheimer's disease Schizophrenia Mood disorders
  • 相关文献

参考文献52

  • 1Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review ofan emerging field[J]. Clin Neurophysiol, 2005, 116(10): 2266-2301.
  • 2Babloyantz A, Salazar JM, Nicolis C. Evidence of chaotic dynamicsof brain activity during the sleep cycle[J]. Phys Lett A, 1985, 111(3):152-156.
  • 3Grassberger P, Procaccia I. Characterization of strange attractors [J].Phys Rev Lett,1983, 50(5): 346 - 349.
  • 4Costa M, Goldberger AL, Peng C-k. Multiscale entropy analysis ofbiological signals[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2005,71(2 Pt 1): 021906.
  • 5Lempel A, Ziv J. On the complexity of finite sequences [J]. IEEETrans InfTheor, 1976, 22(1): 75 _ 81.
  • 6Pincus SM. Approximate entropy as a measure of system complexity[J].Proc Natl Acad Sci USA, 1991,88(6): 2297-2301.
  • 7Fem6ndez A, Andreina MM, Homero R, et al. Analysis of braincomplexity and mental disorders[J]. Actas Esp Psiquiatr, 2010, 38(4): 229-238.
  • 8孙长城,王春方,王勇军,杜金刚,徐强,綦宏志,万柏坤,明东.脑卒中后抑郁症静息脑电信号非线性特征提取与分析[J].国际生物医学工程杂志,2013,36(3):143-146. 被引量:7
  • 9彭静,彭承琳.混沌理论和方法在医学信号处理中的应用[J].国际生物医学工程杂志,2006,29(2):124-127. 被引量:14
  • 10王春方,孙长城,张希,王勇军,綦宏志,何峰,赵欣,万柏坤,张颖,杜金刚,明东.缺血性脑卒中患者脑电信号的样本熵特征分析[J].国际生物医学工程杂志,2015,38(3):138-142. 被引量:6

二级参考文献157

  • 1王文志.中国脑卒中流行病学特征和社区人群干预[J].中国医学前沿杂志(电子版),2009,1(2):49-53. 被引量:71
  • 2彭静,彭承琳.混沌理论和方法在医学信号处理中的应用[J].国际生物医学工程杂志,2006,29(2):124-127. 被引量:14
  • 3何舒,林渝峰,李霞.抑郁症的发病机制研究进展[J].四川生理科学杂志,2006,28(3):126-128. 被引量:28
  • 4Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia. Neurolmage, 2009, 47:S157.
  • 5Vaessen M J, Jansen J F, Hofman P A, et al. Impaired small-world structural brain networks in chronic epilepsy. Neurolmage, 2009, 47: S113.
  • 6Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13:5-14.
  • 7Stam C J. From synchronization to networks: Assessment of functional connectivity in the brain. In: Perez Velazquez J L, Richard W, eds. Coordinated Activity in the Brain, vol 2. Berlin Heidelberg: Springer-Verlag, 2009.91-115.
  • 8Stephan, Hilgetag K E, Burns C C, et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci, 2000, 355:111-126.
  • 9Micheloyannis S, Pachou S, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273-277.
  • 10Micheloyannis S, Vourkas S, Tsirka M, et al. The influence of ageing on complex brain networks: A graph theoretical analysis. Hum Brain Mapp, 2009, 30:200-208.

共引文献184

同被引文献8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部