期刊文献+

基于最大公约数的遥感影像空间尺度转换算法

Scale Transformation Algorithm for Remote Sensing Imagery Based on Greatest Common Divisor
原文传递
导出
摘要 多源、多尺度遥感影像为研究不同尺度的地表变化提供了丰富的数据。但其在作比较研究时,通常会涉及空间尺度统一问题,当多源遥感影像之间的空间分辨率为非整倍数关系时,其空间尺度统一相对困难。为此,本文针对多源、多尺度遥感影像间尺度比较时所涉及的空间尺度转换问题,提出了最大公约数的空间尺度转换算法,并以IKONOS多光谱影像为数据源,采用若干商业软件和本文所提算法进行空间尺度转换比较实验;同时,利用均值、标准差和相关系数等6个评价指标对空间尺度变换后的影像进行定量评价。结果表明,本文提出的空间尺度转换方法对原始影像的光谱信息等特征具有很好的保真性,简单易行,可实现遥感影像任意空间尺度的转换,解决了多源遥感影像之间的空间分辨率为非整倍数关系时的空间尺度转换问题。 The abundant remote sensing data with various spatial, radiational and spectral resolutions from multi- platforms provide rich information sources for the study of land surface information changes at different scales. Scale variation and sensitivity have a great impact on the application of remote sensing imagery in different sci- entific fields. We proposed a transformation algorithm to unify the scales for comparing data at different scales. The method is a scale transformation algorithm based on the greatest common divisor (STAGCD). Firstly, the greatest common divisor (GCD) between two different spatial scales is calculated. Secondly, according to the GCD, a GCD image will be produced by resampling the original remote sensing image. Finally, the new scale im- age will be obtained according to certain intervals for row and column to choose data from the GCD image. Sev- eral scale transformation algorithms have been employed in the test of the scale unification for an IKONOS im- age, including STAGCD and some other algorithms from professional software packages, such as ER Mapper, ERDAS, Matlab and so on. The effectiveness of these algorithms has been evaluated based on the information keeping degree compared with the original remote sensing image. A total of six indicators have been used for quantitative evaluation of the scale transformed images. The histogram and probability density function of Gauss based on kernel bandwidth optimization have been used for visual interpretation of the scale transformed images. The results show that the STAGCD image has adequate ability for keeping the information of original image. When scaling-down, STAGCD only increases the image size, but cannot improve the image' s spatial resolution. When scaling-up, STAGCD not only reduces the image size, but also decreases the image resolution. The STAGCD method is simple and can transform remote sensing imagery at different scales. The method provides an effective solution for the scale transformation between images without an integer multiple relationship.
出处 《地球信息科学学报》 CSCD 北大核心 2015年第12期1520-1528,共9页 Journal of Geo-information Science
基金 福建省自然科学基金项目(2012J01171 2012J01169) 国家科技支撑计划项目(2013BAC08B01-05) 福建省教育厅科技项目(JA15064) 海岛(礁)测绘技术国家测绘地理信息局重点实验室基金项目(2010B09)
关键词 多尺度影像 最大公约数 重采样 尺度转换 空间尺度 multi-scale images greatest common divisor resampling scale transformation spatial scale
  • 相关文献

参考文献16

  • 1Lain N, Quattrochi D A. On the issues of scale, reolution, and fractal analysis in the mapping sciences[J]. Profes- sional Geographer, 1992,44(1):88-98:.
  • 2Justice C O, Markham B L, Townshend J R G, et al. Imag- ery degradation of satellite data[J]. International Journal of Remote Sensing, 1989,10(9):1539-1561.
  • 3Hay G J, Niemann K O, Goodenough D G. Imagery thresholds, image-objects, and upscaling: A multi-scaleevaluation[J]. Remote Sensing of Environment, 1997,62 (1):1-19.
  • 4Bian L, Butler R. Comparing effects of aggregation meth- ods on statistical and imagery properties of simulated im- agery data[J]. Photogrammetric Engineering and Remote Sensing, 1999,65(1):73-84.
  • 5Kim G, Barros A P. Downsealing of remotely sensed soil moisture with a modified fractal interpolation method us- ing contraction mapping and ancillary data[J]. Remote Sensing of Environment, 2002,83(3):400-413.
  • 6Goward S N, Davis P E, Fleming D, et al. empirical com- parison of Landsat 7 and IKONOS multispectral measure- ments for selected Earth Observation System (EOS) vali- dation sites[J]. Remote Sensing of Environment, 2003,88: 80-99.
  • 7Wang G, Gertner G, Anderson A B. Up-scaling methods based on variability-weighting and simulation for infer- ring imagery information across scales[J]. International Journal of Remote Sensing, 2004,25(22):4961-4979.
  • 8彭晓鹃,邓孺孺,刘小平.遥感尺度转换研究进展[J].地理与地理信息科学,2004,20(5):6-10. 被引量:25
  • 9布仁仓,李秀珍,胡远满,常禹,贺红士.尺度变换的正确率分析[J].生态学报,2004,24(4):659-665. 被引量:7
  • 10韩鹏,龚健雅,李志林,程亮.遥感影像空间尺度上推方法的评价[J].遥感学报,2008,12(6):964-971. 被引量:16

二级参考文献161

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部