期刊文献+

苹果属植物寄主应答病原菌胁迫的蛋白质组学研究进展

Progress in proteomics studies of the response of apple plants to their pathogens
下载PDF
导出
摘要 苹果基因组研究的不断深入,为苹果属植物蛋白质组学研究奠定了基础。近年来,蛋白质组学分析方法在探讨苹果属植物应答病原菌胁迫时,所启动的抗病相关蛋白的差异表达,以及相关抗病机制方面发挥了重要作用。本文针对近年来蛋白质组学研究技术在果树上的应用,综述了苹果属植物应答火疫病、褐斑病、黑星病等主要病害胁迫的蛋白质组学研究进展,分析了蛋白质组学分析技术在苹果属植物相关研究中存在的问题,以期为进一步探究苹果属植物抗病的分子机制提供参考。 Rapid development of apple genome research builds up an important basis for proteomics research of Malus spp.In recent years,proteomics approaches played a key role in exploring the differential expression of de-fense-related proteins induced by the pathogens,and understanding the molecular mechanism of apple host resist-ance to the pathogens.Based on the application of proteomics approaches on fruit trees,we review the apple pro-teomics studies,including the resistance-related proteins of apple host induced by some main diseases in apple pro-duction,such as fire blight,Marssonina apple blotch,and apple scab,which will provide some clues to a compre-hensive understanding of the molecular mechanism of apple host resistance to the pathogens.
出处 《植物保护》 CAS CSCD 北大核心 2015年第6期17-21,共5页 Plant Protection
基金 国家现代农业产业技术体系(CARS-28) 国家自然科学基金项目(30900968 31201602) 国家科技支撑计划项目(2013BAD02B01)
关键词 苹果 病原菌 蛋白质组学 研究进展 apple pathogen proteomics progress
  • 相关文献

参考文献40

  • 1Bednarek P, Osbourn A. Plant-microbe interactions: chemical diversity in plant defense [J]. Science, 2009, 324 746 - 748.
  • 2Mayer M, Oberhuber C, Loncaric I, et al. Fireblight (Er'winia amylovora) affects Mal d 1-related allergenieity in apple [J]. European Journal of Plant Pathology,2011,131(1) : 1 - 7.
  • 3SOh H C, Park A R, Park S, et al. Comparative analysis of pathogenesis-related protein 10 (PR10) genes between fungal resistant and susceptible peppers l-J]. European Journal of Plant Pathology, 2012, 132(1) : 37 - 48.
  • 4Jurick W M, Janisiewiez W J, Saftner R A, et al. Identifiea tion of wild apple germptasm (Malus spp. ) accessions with re- sistance to the postharvest decay pathogens Penicillium expan- sum and Colletotrichum acutatum[J]. Plant Breeding, 2011, 130(4) : 481 - 486.
  • 5Volk G M, Richards C M, Reilley A A, et al. Genetic diversity and disease resistance of wild Malus orientalis from Turkey and southern Russia [J]. Journal of the American Society for Horticultural Science, 2008, 133(3) : 383 - 389.
  • 6Montesinos E, Bonaterra A, Badosa E, et al. Plant-microbe interactions and the new biotechnological methods of plant disease control [J]. International Microbiology, 2002, 5(4): 169- 175.
  • 7Choi H W, Lee B G, Kim N H, et al. A role for a menthone reductase in resistance against microbial pathogens in plants [J]. Plant Physiology, 2008, 148(1) : 383 - 401.
  • 8Li Z T, Dhekney S A, Gray D J. PR-1 gene family of grape- vine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco [J]. Plant Cell Reports, 2011,30 (1) : 1 - 11.
  • 9Duffy B, Keel C, Defago G. Potential role of pathogen signa- ling in multitrophic plant-microbe interactions involved in dis- ease protection [J]. Applied and Environmental Microbiology, 2004, 70(3): 1836- 1842.
  • 10Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837-846.

二级参考文献77

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部