期刊文献+

码空间内的数字图像模型与计盒维数移位算法

Digital Image Model in Code Space and the Bit-Shifting Algorithm of Box-Counting Dimension
原文传递
导出
摘要 图像分形维数在图像分割、图形建模等多方面有重要应用,为了得到快速计算方法,对现有的数字图像计盒维数和码空间进行了研究,推导出了码空间划分与覆盖的有关结论,给出了码空间内的数字图像模型,重新释义了像素含义。在此基础上,提出了一种通过码移位计算计盒维数的方法——计盒维数移位算法。理论和实验证明计盒维数移位算法是一种易实现的高效计算方法。 There are important applications of image fractal dimension in image segmentation, graphics modeling and other aspects. In order to get fast algorithm, the box counting dimension (BCD) and code space are studied. The code space covering and partition theories are discussed. The code space digital image model is proposed and the pixel meaning is reinterpreted. Then a new BCD calculation algorithm by code bit-shifting is proposed. Theory and experiments prove that the bit-shifting algorithm is efficient and easy to achieve.
出处 《武警工程大学学报》 2015年第6期22-26,共5页 Journal of Engineering University of the Chinese People's Armed Police Force
基金 国家自然科学基金资助项目(61401515)
关键词 码空间 图像模型 计盒维数 移位算法 分形 code space image model box- counting dimension (BCD) bit- shifting algorithm fractal
  • 相关文献

参考文献11

  • 1Mandelbrot B B. The Fraetal Geometry of Nature[M]. New York: Maemillan, 1983.
  • 2Sarkar N,Chaudhari B B. An efficient differential box-count- ing approach to compute fractal dimension of image[J]. Sys- tems Man and Cybernetics IEEE Transactions on, 1994, 24 (1): 115-120.
  • 3Edgar G. Measure Topology and Fractal Geometry[M]. Ber- lin : Springer, 2007.
  • 4Kruger A. Implementation of a fast box-counting algorithm [J].Computer Physics Communications, 1996, 98(1): 224 -234.
  • 5Liebovith L S, Toth T. A Fast Algorithm to determine frac- tal dimensions by box counting[J]. Physics Letters A, 1989, 141(8) : 386-390.
  • 6Alevizos P D,Vrahatis M N. Optimal dynamic box-counting algorithm[J]. International Journal of Bifurcation and Cha- os, 2010, 20(12): 4067-4077.
  • 7张志,董福安,伍友利.二维灰度图像的分形维数计算[J].计算机应用,2005,25(12):2853-2854. 被引量:24
  • 8Jimenez J, Rde M J. Fast box-counting algorithm on GPU [J]. Computer Methods and Programs in Biomedicine, 2012, 108(3): 1229-1242.
  • 9Barnsley M F. Fractals Everywhere: New Edition[M]. New York:Courier Dover Publications. 2013.
  • 10Barnsley M F. Superfractals[M]. London:Cambridge Un versity Press, 2006.

二级参考文献12

  • 1MANDELBROT BB.Fractals: form, chance, and dimension[M]. California: Freeman, 1977.
  • 2MANDELBROT BB.The Fractal Geometry of Nature[M]. California: Freeman, 1982.
  • 3法尔科内.分形几何-数学基础及其应用[M].沈阳:东北大学出版社,2001..
  • 4PENTLAND AP. Fractal-Based Description of Natural Scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):661-674.
  • 5PENTLAND AP.Shading into texture[J]. Artificial Intelligence, 1986,29:147-170.
  • 6CHAUDHURI BB, SARKAR N.Texture segmentation using fractal dimension[J]. IEEE Transactions Pattern Pattern Analysis and Machine Intelligence,1995,17(1):72-77.
  • 7ASVESTAS P, MATSOPOULOS GK, NIKITA KS.Estimation of fractal dimension of images using a fixed mass approach[J]. Pattern Recognition Letters,1999,20(3):347-354.
  • 8GANGEPAIN J, ROQUES-CARMES C.Fractal approach to two dimensional and three dimensional surface roughness[J]. Wear,1986,109:119-126.
  • 9KELLER J,CROWNOVER R,CHEN R.Characteristics of Natural Scenes Related to the Fractal Dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5): 621-627.
  • 10SARKAR N, CHAUDHURI BB.An efficient differential box-counting approach to compute fractal dimension of image[J]. IEEE Transactions System Man and Cybernet. 1994,24(1):115-120.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部