期刊文献+

基于UTA方法的多目标优化模型 被引量:3

A Multi-objective Optimization Model Based on UTA
原文传递
导出
摘要 针对多目标线性优化问题进行研究,提出了一种基于效用加性方法(UTA)的多目标线性优化方法.利用不同目标值的组合给出训练方案,决策者针对训练方案给出一些偏好信息,据此推断决策者的效用函数,并进一步求解多目标线性优化模型.进一步给出了算例来说明方法的实施过程及验证可行性.方法较多的考虑了决策者对于决策的偏好,注重决策者的意见,为多目标决策问题提供了一种新的思路. This paper deals with multi-objective optimization problem. A UTA based multi objective linear optimization model is proposed. According to decision maker' s preference on some training alternatives, the utility functions can be draw. These utility functions can be used to balancing objectives. An example is given to explain the procedure and to proof the feasibility. This model considers DM' s preference so that the result could be more satisfying.
出处 《数学的实践与认识》 北大核心 2015年第23期138-146,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金重大项目(71090404) 教育部高等学校博士学科点专项科研基金项目(20113121110003)
关键词 多目标优化 UTA方法 线性插值法 multi-objective optimization UTA pair-wise linear regression model
  • 相关文献

参考文献16

  • 1Shaw K, Shankar R, Yadav S S, Thakur L S. Supplier selection using fuzzy AHP and fuzzy multiobjective linear programming for developing low carbon supply chain[J]. Expert Systems with Applications, 2012, 39(9): 8182-8192.
  • 2Wang R C, Liang T F. Application of fuzzy multi-objective linear programming to aggregate production planning[J]. Computers Industrial Engineering, 2004, 46(1): 17-4l.
  • 3Yang M F, Lin Y. Applying fuzzy multi-objective linear programming to project management decisions with the interactive two-phase method[J]. Computers Industrial Engineering, 2013, 66(4): 1061-1069.
  • 4张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 5陈亮,顾雪平,贾京华.基于病毒进化改进NSGA-Ⅱ算法的扩展黑启动多目标优化[J].电力系统保护与控制,2014,42(2):35-42. 被引量:7
  • 6Mavrotas G, Pechak 0, Siskos E, Doukas H, Psarras J. Robustness analysis in multi-objective mathematical programming using monte carlo simulation[J]. European Journal of Operational Research, 2015, 240(1): 193-20l.
  • 7Moghaddam K S. Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming[J]. International Journal of Production Economics. 2013, 146(2): 704-716.
  • 8Jadidi 0, Zolfaghari S, Cavalieri S. A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation[J]. International Journal of Production Economics, 2014, 148: 158-165.
  • 9Zimmermann H J. Fuzzy programming and linear programming with several objective functions[J]. Fuzzy Sets and Systems, 1978, 1(1): 45-56.
  • 10Leberling H. On finding compromise solutions in multicriteria problems using the fuzzy minoperator[J]. Fuzzy Sets and Systems, 1981, 6(2): 105-118.

二级参考文献31

  • 1何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5. 被引量:181
  • 2陶玉华,杨增辉,祝瑞金,汪立成.黑启动时大功率电动机启动对系统影响的研究[J].华东电力,2007,35(5):48-50. 被引量:9
  • 3C A Coello Coello.A Comprehensive survey of evolutionary-based multiobjective optimization,techniques.Knowledge and Information Systems,1999,1(3):269~308
  • 4J D Schaffer.Multiple objective optimization with vector evaluated genetic algorithms.The First Int'l Conf on Genetic Algorithms,Lawrence Erlbaum,1985
  • 5D A V Veldhuizen,G B Lamont.Multiobjective evolutionary algorithm research:A history and analysis.Department of Electrical and Computer Engineering,Graduate School of Engineering,Air Force Institute of Technology,Tech Rep:TR-98-03,1998
  • 6R Eberhart,J Kennedy.A new optimizer using particle swarm theory.In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Service Center,1995.39~43
  • 7J Kennedy,R Eberhart.Particle swarm optimization.IEEE Int'l Conf on Neural Networks,Perth,Australia,1995
  • 8K E Parsopoulos,M N Vrahatis.Particle swarm optimizer in noisy and continuously changing environments.In:M H Hamza ed.Artificial Intelligence and Soft Computing.Iasted:ACTA Press,2001.289~294
  • 9K E Parsopoulos,M N Vrahatis.Particle swarm optimization method for constrained optimization problems.Euro-Int'l Symp on Computational Intelligence 2002,Slovakia,2002
  • 10R C Eberhart,X Hu.Human tremor analyis using particle swarm optimization.IEEE Congress on evolutionary computation (CEC 1999),Washington,D C,1999

共引文献230

同被引文献25

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部