期刊文献+

围长不小于6且最大度至少为8的平面图的无圈列表边染色 被引量:1

Acyclic List Edge Coloring of Planar Graphs with Girth ≥6 and Maximum Degree ≥8
原文传递
导出
摘要 对图G的一个正常边染色,如果图G的任何一个圈至少染三种颜色,则称这个染色为无圈边染色.若L为图G的一个边列表,对图G的一个无圈边染色φ,如果对任意e∈E(G)都有ф(e)∈L(e),则称ф为无圈L-边染色.用a′_(list)(G)表示图G的无圈列表边色数.证明若图G是一个平面图,且它的最大度△≥8,围长g(G)≥6,则a′_(list)(G)=△. A proper edge coloring of a graph is said to be acyclic if any cycle is colored with at least three colors. For an edge-list L of a graph G, an acyclic edge coloring Ф of G is called an acyclic L-edge coloring if Ф(e) ∈ L(e) for any e ∈ E(G), In this paper, we prove that a′list (G) = △ if the maximum degree △≥ 8 and the girth g(G) ≥ 6.
作者 马刚
出处 《数学的实践与认识》 北大核心 2015年第23期202-208,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金青年基金(11401348) 山东理工大学博士基金(4041410021)
关键词 平面图 无圈列表边染色 围长 planar graphs acyclic list edge coloring girth
  • 相关文献

参考文献1

二级参考文献14

  • 1Jian-liangWu,Yu-liangWu.The Entire Coloring of Series-Parallel Graphs[J].Acta Mathematicae Applicatae Sinica,2005,21(1):61-66. 被引量:4
  • 2Branko Grünbaum.Acyclic colorings of planar graphs[J]. Israel Journal of Mathematics . 1973 (4)
  • 3Alon,Zaks.Algorithmic Aspects of Acyclic Edge Colorings[J]. Algorithmica . (4)
  • 4Molloy M,,Reed B.Further algorithmic aspects of the local lemma. Proceedings of the 30th Annual ACM Symposium on Theory of Computing . 1998
  • 5Grünbaum,B.Acyclic colorings of planar graphs. Israel Journal of Mathematics . 1973
  • 6Alon N,Zaks A.Algorithmic Aspects of Acyclic Edge Colorings. Algorithmica . 2002
  • 7Borodin,O. V.On Acyclic Colorings of Planar Graphs. Discrete Mathematics . 1979
  • 8Kostochka,A. V.,Melnikov,L. S.Note to the paper of B. Grünbaum on acyclic colorings. Discrete Mathematics . 1976
  • 9Alon,N.,McDiarmid,C.,Reed,B.Acyclic colouring of graphs. Random Structures and Algorithms . 1991
  • 10Alon N,Sudakov B,zaks A.Acyclic edge colorings of graphs. Journal of Graph Theory . 2001

共引文献23

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部