摘要
设f_n是基于一个核函数K和取值于R^d的独立同分布随机变量列的一个非参数核密度估计.推广了何和高一文中相应中偏差的结果,即证明统计量sup_(x∈R)~d|f_n(x)-f_n(-x)|的中偏差,并给出了两个具体的模拟例子.
Let fn be a non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random variables taking values in R^d. The goal of this article is to extend the results of moderate deviations in [4], i.e., to prove moderate deviations for the statistic supx∈R^d|fn(x)-fn(-x)|, and moreover present two concrete simulated examples.
出处
《数学的实践与认识》
北大核心
2015年第23期209-215,共7页
Mathematics in Practice and Theory
基金
江西省自然科学基金(20122BAB201016
20132BAB201017)
关键词
对称检验
核密度估计
中偏差
symmetry test
kernel density estimator
moderate deviations