期刊文献+

双光子过程原子与耦合腔相互作用中的量子失协

The Quantum Discord in the System of Atoms Interacting with Coupled Cavities via a Two-photon Hopping Interaction
下载PDF
导出
摘要 研究原子与耦合腔相互作用系统,考虑每个腔囚禁一个二能级原子,原子与腔场发生共振相互作用,腔场也相互耦合的情况;采用量子失协几何度量方法—几何量子失协,来度量两个子系统间的量子失协.利用数值计算方法给出了量子失协的演化曲线,讨论了腔场间耦合系数变化对量子失协的影响.研究结果表明:随腔场间耦合系数增大,两原子间量子失协增大,而原子与腔场间或两腔场间的量子失协却减小. The cavity each imprisons one two-level atom,the atom has a resonant interaction with the cavities,and the cavities also interact with each other.Considering these,the geometrical quantum discord was used to measure quantum correlation in quantum systems.The geometrical quantum discord between the atoms,the cavities,and also between the atoms and the cavities were investigated.By using the numerical method,the evolution curves of the geometrical quantum discord were given,and the influences on the geometrical quantum discord with the changing coupling constant between the cavities were discussed.The results obtained show that the geometrical quantum discord between atoms is strengthened,but the geometrical quantum discord between cavities or between the atoms and the cavities are all weakened with the increasing of the coupling constant between cavities.
出处 《光子学报》 EI CAS CSCD 北大核心 2015年第11期139-143,共5页 Acta Photonica Sinica
基金 福建省自然科学基金(No.2015J01020) 福建省教育厅A类科技项目(No.JA12327)资助~~
关键词 量子光学 二能级原子 双光子过程 耦合腔 量子失协 Quantum optics Two-level atom Two-photon process Coupling cavities Quantum discord
  • 相关文献

参考文献17

  • 1EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum mechanical description of physical reality be considered complete[J]. Physical Review, 1935, 47(10) : 777-780.
  • 2BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [ J ]. Physical Review Letters, 1993, 70(11): 1895-1899.
  • 3MARK H, BUZEK V, BERTHIANME A. Quantum secret sharing[J]. Physical Review A, 1999, 59(3) : 1829-1834.
  • 4SHOR P W. Scheme for reducing decoherence in quantum computer memery[J]. Physical Review A, 1995, 52 (4) : R2493-R2496.
  • 5DATTA A, VIDAL G. Role of entanglement and correlations in mixed-state quantum computation[J]. Physical Review A, 2007, 75(4) : 042310.
  • 6DATTA A, SHAJI A, CAVES C M. Quantum discord and the power of one qubit[J]. Physical Review Letters, 2008, 100(5) : 050502.
  • 7LANGON B P, BARBIERI M, ALMEIDA M P, et al. Experimental quantum computing without entanglement[J]. Physical Review Letters, 2008, 101(20) : 200501.
  • 8OLLIVIER H, ZUREK W H. Quantum discord: a measure of the quantumness of correlations[J]. Physical Review Letters, 2002, 88(1); 017901.
  • 9DAKIC B, VEDRAL V, BRUKNER C. Necessary and sufficient condition for nonzero quantum discord[J]. Physical Review Letters, 2010, 105(19) : 190502.
  • 10JI Y H, LIU Y M. Regulation of entanglement and geometric quantum discord of hybrid superconducting qubits for circuit QED[ J ]. International Journal of Theoretical Physics, 2013, 52(9), 3220-3228.

二级参考文献136

  • 1Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865.
  • 2Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press).
  • 3Bennett C H, DiVincenzo D, Fuchs C, Mor T, Rains E, Shor P, Smolin J and Wootters W 1999 Phys. Rev. A 59 1070.
  • 4Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895.
  • 5Bennett C H and Wiesner S 1992 Phys. Rev. Lett. 69 2881.
  • 6Braunstein S, Caves C, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054.
  • 7Meyer D 2000 Phys. Rev. Lett. 85 2014.
  • 8Vidal G 2003 Phys. Rev. Lett. 91 147902.
  • 9Biham E, Brassard G, Kenigsberg D and Mor T 2004 Theor. Comput. Sci. 320 15.
  • 10Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部