期刊文献+

不等式约束极大极小问题的可行下降束方法 被引量:5

A feasible descent bundle method for inequality constrained Minimax problems
原文传递
导出
摘要 本文提出一个求解不等式约束极大极小问题的可行下降束方法.该方法的主要特点有(1)借助于函数的次梯度及束方法思想,不需要假设原问题的分量函数具备光滑性;(2)利用部分割平面模型技术,每次无效步迭代仅需利用一个分量函数的函数值和次梯度产生新的割平面,从而有效减少了计算量;(3)能够保证有效迭代点的可行性及目标函数的下降性;(4)引入次梯度聚集技术,对束集中的次梯度进行聚集,克服了数值计算和存储的困难;(5)算法具备全局收敛性,且初步的数值试验表明算法是有效的. In this paper, a feasible descent bundle method for solving inequality constrained Minimax problems is proposed. The main features of the method are:(1) By using the subgradients of functions and the idea of bundle method, it does not assume that the component functions of the original problem are smooth;(2) by adopting the technique of partial cutting-planes model, at each null step, only the function value and subgradient of one component function are needed to generate the new cutting plane, and therefore the computational cost is reduced effectively;(3) it can ensure the feasibility of the serious iterates and the decsent of the objective function;(4) by introducing the technique of subgradient aggregation to aggregate the subgradients in the bundle, the difficulty of numerical calculation and storage is overcome;(5) the algorithm is proved to be globally convergent, and the preliminary numerical results show that the proposed algorithm is effective.
出处 《中国科学:数学》 CSCD 北大核心 2015年第12期2001-2024,共24页 Scientia Sinica:Mathematica
基金 广西自然科学基金(批准号:2013GXNSFAA019013和2014GXNSFFA118001) 国家自然科学基金(批准号:11271086和11301095)资助项目
关键词 不等式约束 极大极小问题 可行下降 束方法 部分割平面模型 inequality constraints Minimax problems feasible descent bundle method partial cutting-planes model
  • 相关文献

参考文献40

  • 1Michelot C, Plastria F. An extended multifacility minimax location problem revisited. Ann Oper Res, 2002, 111: 167-179.
  • 2Wang S Y, Yamamoto Y, Yu M. A minimax rule for portfolio selection in frictional markets. Math Methods Oper Res, 2003, 57:141-155.
  • 3Chernousko F L. Minimax control for a class of linear systems subject to disturbances. J Optim Theory Appl, 2005, 127:535-548.
  • 4Baums A. Minimax method in optimizing energy consumption in real-time embedded systems. Aurora Control Comput Sci, 2009, 43:57-62.
  • 5Li Y P, Huang G H. Inexact minimax regret integer programming for long-term planning of municipal solid waste management -- Part A: Methodology development. Environ Eng Sci, 2009, 26:209-218.
  • 6Watson G A. The minimax solution of an overdetermined system of nonlinear equations. IMA J Appl Math, 1979, 23: 167-180.
  • 7Overton M L. Algorithms for nonlinear fl and g fitting. In: Nonlinear Optimization. London: Academic Press, 1982, 213-221.
  • 8Li X S, Fang S C. On the entropic regularization method for solving min-max problems with applications. Math Methods Oper Res, 1997, 46:119-130.
  • 9Xu S. Smoothing method for minimax problems. Comput Optim Appl, 2001, 20:267-279.
  • 10Di Pillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem. Math Program, 1993, 60:187 -214.

同被引文献15

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部