期刊文献+

量子广义Kac-Moody代数的整形式

Integral Structure of Quantum Generalized Kac-Moody Algebras
下载PDF
导出
摘要 主要讨论一阶量子广义Kac-Moody代数U_q(2α)的结构,其中a∈Z<0.在此基础上,刻画了量子广义代数U_q(g)的另一种整形式. This paper deals with the structure of quantum generalized Kac-Moody algebras Uq(2a) with a∈Z〈0. Based on the above analysis, the authors give another integral form of quantum generalized Kac-Moody algebras Uq(g).
出处 《数学年刊(A辑)》 CSCD 北大核心 2015年第4期451-460,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11226063) 中央高校基本科研业务费专项资金(No.ZY1217)的资助
关键词 量子广义Kac-Moody代数 整形式 Borcherds-Cartan矩阵 Quantum generalized Kac-Moody algebras, Integral form Borcherds-Cartan matrix
  • 相关文献

参考文献15

  • 1Drinfeld V G. Hopf algebra and the Yang-Baxter equation [J]. Soviet Math Dokl, 1985, 32(1):798-820.
  • 2Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation [J]. Lett Math Phys, 1985, 10:63-69.
  • 3Lusztig G. Quantum deformations of certain simple modules over enveloping algebras [J]. Adv in Math, 1988, 70(2):237-249.
  • 4Lusztig G. Finite-dimensional Hopf algebras arising from quantized universal enveloping algebras [J]. J Amer Math Soc, 1990, 3(1):257-296.
  • 5Deng B, Du J, Parashal113, Wang J. Finite dimensional algebras and quantum groups [M]//Mathematical Surveys and Monographs, vol 150, American Mathematical Society, Providence, RI, 2008.
  • 6Hong J, Kang S J. Introduction to quantum groups and crystal bases [M] //Graduate Studies in Mathematics, vol 42, American Mathematical Society, Providence, RI, 2002.
  • 7Jantzen J C. Lectures on quantum groups [M]//Graduate Studies in Mathematics, vol 6, American Mathematical Society, Providence, RI, 1995.
  • 8Lusztig G. Introduction to quantum groups [M]//Progress in Math, vol 110, Boston: Birkhiuser, 1993.
  • 9Borcherds R E. Generalized Kac-Moody algebras [J]. J Algebra, 1988, 115:501-512.
  • 10Borcherds R E. Monstrous moonshine and monstrous Lie superalgebras [J]. Invent Math, 1992, 109:405-444.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部