期刊文献+

直接多胞体同伦方法求解混合三角多项式方程组

DIRECT POLYHEDRAL HOMOTOPY METHODS FOR SOLVING MIXED TRIGONOMETRIC POLYNOMIAL SYSTEMS
原文传递
导出
摘要 混合三角多项式方程组是科学工程计算中常见的一类非线性方程组,它的每项由一部分变元及另一部分变元的三角函数构成.文章主要考虑利用直接多胞体同伦方法求解混合三角多项式方程组.数值结果表明文中的方法优于已有的求混合三角多项式方程组全部解的数值方法. A mixed trigonometric polynomial system, which rather frequently occurs in applications, is a polynomial system whose monomial is mixed by some variables and sine and cosine functions applied to the other variables. In this paper; the direct polyhedral homotopy method is applied to solve this class of systems, and numeri- cal results show that this new method is more efficient than the existent numerical methods for finding all isolated solutions of a mixed trigonometric polynomial system.
出处 《系统科学与数学》 CSCD 北大核心 2015年第11期1367-1373,共7页 Journal of Systems Science and Mathematical Sciences
基金 重大研究计划培育项目(91230103) 国家自然科学基金项目(11101067 11171051) 中央高校基本科研业务费专项资金资助课题
关键词 混合三角多项式方程组 多项式方程组 同伦方法 混合体积. Mixed trigonometric polynomial systems, polynomial systems, homotopy methods, mixed volume.
  • 相关文献

参考文献13

  • 1Van Hentenryck P, McAllester D, Kapur D. Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis, 1997, 34: 797-827.
  • 2Morgan A, Sommese A. Computing all solutions to polynomial systems using homotopy contin- uation. Applied Mathematics and Computation, 1987, 24: 115-138.
  • 3Drexler F J. Eine Methode zur Berechnung samtlicher Losungen von Polynomgle - ichungssyste- men. Numerische Mathematik, 1977/78, 29: 45-58.
  • 4Garcia C B, Zangwill W I. Finding all solutions to polynomial systems and other systems of equations. Mathematical Programming, 1979, 16: 159-176.
  • 5Li T Y, Sauer T, Yorke J A. The random product homotopy and deficient polynomial systems. Numerische Mathematik, 1987, 51: 481-500.
  • 6Morgan A, Sommese A. A homotopy for solving general polynomial systems that respects m- homogeneous structures. Applied Mathematics and Computation, 1987, 24: 101-113.
  • 7Verschelde J, Haegemans A. The GBQ-algorithm for constructing start systems of homotopies for polynomial systems. SIAM Journal on Numerical Analysis, 1993, 30: 583-594.
  • 8Li T Y. Numerical solution of polynomial systems by homotopy continuation methods, in Hand- book of numerical analysis. Vol. XI, Handb. Numer. Anal., XI. North-Holland, Amsterdam, 2003, 209-304.
  • 9Li T Y, Sauer T, Yorke J A. The cheater's homotopy: An efficient procedure for solving systems of polynomial equations. SIAM Journal on Numerical Analysis, 1989, 26: 1241-1251.
  • 10Morgan A P, Sommese A J. Coefficient-parameter polynomial continuation. Applied Mathematics and Computation, 1989, 29: 123-160.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部