期刊文献+

基于Logistic和Tent双重映射的混沌粒子群算法 被引量:2

下载PDF
导出
摘要 粒子群算法在解决一些复杂的优化问题上仍存在较多缺陷,如在迭代后期易陷入局部极值、寻优结果不稳定等。本文利用混沌理论进行了算法的改进研究,通过分析Logistic映射和Tent映射的序列特点,发现Logistic序列全局遍历性强但后期深度搜索能力较弱,而Tent序列则具有较好的混沌扰动能力。因此,本文提出了基于Logistic和Tent双重映射的混沌粒子群算法,以充分利用两种映射的优点,并提高算法全局遍历和深度搜索的能力,克服原算法易陷入早熟等缺陷。仿真结果证明了算法的有效性。
出处 《数字技术与应用》 2015年第12期136-137,共2页 Digital Technology & Application
  • 相关文献

参考文献3

  • 1梁慧,混沌粒子群优化算法的分析与应用[C].广东工业大学,2011:31-33.
  • 2HongliXu ,XuQian,liang Zhang. Study of ACO Algorithm Opti-mization Algorithm Based on Improved Tent Chaotic MappingJournal of Information Computational Science. El 9:6 (2012):1653-1660.
  • 3胥小波,郑康锋,李丹,武斌,杨义先.新的混沌粒子群优化算法[J].通信学报,2012,33(1):24-30. 被引量:126

二级参考文献16

  • 1高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proc of the First IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE Press, 1995. 1942-1948.
  • 3MODARES H, ALFI A, NAGHIBI-SISTANI M B. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) 1105-1111.
  • 4KARAKUZU C. Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J]. International Journal of Innovative Computing, Information and Control, 2010, 6(10):4755-4770.
  • 5KULKARNI R V, VENAYAGAMOORTHY G K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J] IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40(6) 663-675.
  • 6ZHANG W, LIU J, NIU Y Q. Quantitative prediction of MHC-II binding affinity using particle swarm optimization[J]. Artificial Intelligence in Medicine,2010,50(2): 127-132.
  • 7GHEITANCHI S, ALI E STIPIDIS E. Particle swarm optimization for adaptive resource allocation in communication networks[J]. EURASIP Journal on Wireless Communications and Networking, 2010. 1-13.
  • 8BERGH E An Analysis of Particle Swarm Optimizers[D]. Department of Computer Science, University of Pretoria, South Africa, 2006 118-123.
  • 9JIAO B, LIAN Z G, GU X S. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitons & Fractals, 2008, 37(3) 698-705.
  • 10MENG H J, ZHENG P, WU R Y, et al. A hybrid particle swarm algorithm with embedded chaotic search[A]. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems[C]. Singapore, 2004. 367-371.

共引文献125

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部