期刊文献+

一类二阶有理型差分方程二周期解的局部稳定性

Local Stability of Two Period Solutions of Second Order Rational Difference Equation
下载PDF
导出
摘要 应用稳定流形定理研究了二阶有理型非线性差分方程x_(n+1)=α+x_(n-1)/x_n,n=0,1,…二周期正解的局部稳定性,这里α=1且初始条件x-1和x0为任意正实数,证明了在一定条件下方程的最小二周期解是稳定的. Using the stable manifold theorem,we study the local stability of two period solutions of second order rational difference equation xn+1=α+xn-1xn ,n=0,1,…,whereα=1 and the initial condition x-1 and x0 are arbitrary positive real numbers. The result proves that the minimum two periodic solutions are stable under some conditions.
出处 《北华大学学报(自然科学版)》 CAS 2015年第6期716-719,共4页 Journal of Beihua University(Natural Science)
基金 吉林省教育厅科学技术研究项目(2011152) 吉林省教育厅"十二五"规划课题(GH150078)
关键词 二阶差分方程 二周期解 局部渐近稳定性 second order difference equation two period solutions local and asymptotical stability
  • 相关文献

参考文献9

  • 1A M Amleh, E A Grove, D A Georgiou, et al. On the recursive sequence xn+1 = α+xn-x/xn [ J ]. J Math Anal Appl, 1999,233:790-798.
  • 2E Camouzis, R DeVauh, G Ladas. On the recursive sequence = α+xn-x/xn[J]. Difference Equations Appl,2001,7 :477-482.
  • 3Devault, C Kent,W Kosmala. On the recursive sequence = α+xn-x/xn[ J]. J Diff Equa Appl,2003 ,9 :721-730.
  • 4S Atawna, R Abu-Saris, I Hashim. Local stability of period two cycles of second order rational difference equation [ J ]. Discrete Dynamics in Nature and Society,2012,ID 969813.
  • 5V L Kocic, G Ladas. Global behavior of nonlinear difference equations of higher order with applications [ M ]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 6Alaa E Hamza. On the recursive sequence α+xn-x/xn[J]. Math Anal Appl,2006,322:668-674.
  • 7M R S Kulenovic, G Ladas. Dynamics of second order rational difference equations with open problem and conjectures [ M ]. Chapman & Hall:Boca Raton Fla USA,2002.
  • 8Stevo Stevic. On the difference equationα+xn-x/xn[J]. Computers and Mathematics with Applications,2008,56:1159-1171.
  • 9L Berg. Asymptotische darstellungen and entwicklungen [ M ]. Berlin:Dt Verlag Wiss, 1968.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部