期刊文献+

遮挡情况下多尺度压缩感知跟踪 被引量:2

Multi-scale Compression Perception Tracking under Occlusion
下载PDF
导出
摘要 针对现有在线学习跟踪算法中目标在线模型更新错误导致跟踪漂移的问题,提出一种在线模型自适应更新的目标跟踪算法:首先利用压缩感知技术的高效性,对多尺度图像特征进行降维,并提取多尺度样本来实现目标尺度自适应更新,再由提取的正负样本低维图像特征训练朴素贝叶斯分类器,利用分类器输出置信度最大处目标样本完成目标跟踪,并依据当前目标置信度来自适应在线模型更新速率,减少了遮挡带来的目标错误更新。实验表明:该方法在尺度变化、局部和全局遮挡、光照变化等情况下均能完成鲁棒跟踪,平均跟踪成功率较原始压缩感知跟踪算法提高了20.3%。 In order to deal with the drift problem by updating error in current online learning tracking algorithms, a new adaptive update tracking algorithm is proposed. First of all, based on the efficiency of compressed sensing, the multi-scale image feature space is decreased, and multi-scale samples are exacted to update the target scale. Secondly, a naive Bayes classifier is trained by low dimension image features from positive and negative samples. Experimental results show that the proposed algorithm can complete the robust tracking under the condition of scale changes, partial and full occlusion, illumination changes, etc. Tracking successful rate is improved by 20.3% compared with the original compressive tracking.
出处 《红外技术》 CSCD 北大核心 2015年第12期1052-1057,共6页 Infrared Technology
基金 国家自然科学基金项目 编号:61440044 61102008 61462002 61163017 宁夏自然科学基金项目 编号:NZ13097 国家民委科研项目 编号:14BFZ003
关键词 目标跟踪 在线学习 压缩感知 object tracking, online learning, compressive sensing
  • 相关文献

参考文献11

  • 1Wu Y, Lim J, Yang M H. Online object tracking: a benchmark[C]//lEEE Conference on Computer Vision and Pattern Recognition, 2013:2411-2418(doi: 10,1109/CVPR,2013.312).
  • 2Ross D, Lim J, Lin R, et al. Incremental learning for robust visual tracking[C]//lnternational Conference on Computer Vision, 2008, 77(1-3)125-141.
  • 3Mei X, Ling H. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
  • 4Li H, Shen C, Shi Q. Real- time visual tracking using compressive sensing[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2011: 1305- 1312 (doi: http://doi, ieeecomputersoeiety, org/ 10,1109/CVPR. 2011. 5995483).
  • 5Grabner H, Leistaer C, Bischof H. Semi- supervised on-line boosting for robust tracking[ C]//European Conference on Computer Vision, 2008, Part I: 234-247.
  • 6Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33: 1619-1632.
  • 7Kalal Z, Matas J, Mikolajczyk K. Tracking -learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34:1409-1422.
  • 8Zhang K H, Zhang L, Yang M H. Real time compressive tracking [C]//European Conference on Computer Vision, 2012, 7574:864 - 877.
  • 9Zhu Qiuping, Yan Jia, Deng Dexiang. Compressive tracking via over- saturated sub-region classifiers[J], lET Computer Vision, 2013, 17(6): 448-455.
  • 10Jing Jing, Xu Guangzhu, Lei Bangitm. Using appearance rematching to improve compressive tracking[C]//Proceedings of the fiflh International Conference on Internet Multimedia Computing and Service, 2013: 28-33(doi: 10,1145/2499788. 2499825).

二级参考文献15

  • 1WANG S, LU H CH, YANG F, etal.. Superpix- el tracking [C]. Compute Vision (ICCV), 2011: 1323-1330.
  • 2ORON S, AHARON B H, LEVI D, et al.. Local- ly orderless tracking [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Con- ference, 2012.
  • 3KWON J, LEE K M. Tracking of a non-rigid object via patch-based dynamic appearance modeling and a- daptive basin hopping Monte Carlo sampling [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2009,1208-1215.
  • 4KALAL Z, MATAS J, MIKOLAJCZYK K. On line learning of robust object detectors during unsta hie tracking [C]. Computer Visiotl Workshops ( IC CV Workshops), 2009 : 1417-1424.
  • 5GRABNER H, GRABNER M, BISCHOF H. Real time tracking via on-line boosting [C]. Proceedings of British Machine Vision Conference, 2006, 1: 47-56.
  • 6ADAM A, RIVLIN E, SHIMSHON L. Robust frag- ments-based tracking using the integral histogram [ C ]. Computer Vision and Pattern Recognition,IEEE Computer Society Conference, 2006 : 798- 805.
  • 7NEJHUM S M S, HO J, YANG M H. Visual tracking with histograms and articulating blocks [C]. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 2008 : 1-8.
  • 8YANG J CH, YU K, HUANG T. Supervised Translation-Invariant sparse coding [C]. Computer Vision and Pattern Recognition (CVPR), 2010: 3517-3524.
  • 9LI H X, SHEN CH H. Real-time visual tracking using compressive sensing [C]. Computer Vision and Pattern Recognition (CVPR), 2011 : 1305- 1312.
  • 10ZHANG K H, ZHANG L, YANG M H. Real- time compressive tracking [C]. European Confer- ence on Computer Vision, 2012.

共引文献47

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部