期刊文献+

基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测 被引量:3

Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames
下载PDF
导出
摘要 基于指数再生窗Gabor框架的欠Nyquist采样系统对窄脉冲信号完成采样与重构一般情况下效果较好,但是当框架高度冗余时,使用传统面向系数域的方法对信号进行子空间探测会面临失败或较大误差。该文采用面向信号域的思想,构建了分块的对偶Gabor字典,并对信号分块稀疏表示;根据信号的分块表示推导了采样系统的测量矩阵,提出了测量矩阵受字典相干性约束的分块e-相干性;将信号合成模型引入多观测向量问题,提出基于分块e-闭包的同步正交匹配追踪算法(,B FSOMPe),用于信号子空间探测。此外还证明了算法的收敛约束条件。仿真结果表明,所提子空间探测方法相比传统方法提高了信号重构成功率,降低了采样通道数,并增强了系统鲁棒性。 The sampling system based on Gabor frames with exponential reproducing windows holds nice performance for short pulses in general cases, but when the frames are highly redundant, the traditional coefficient oriented methods for subspace detection may fail or have large error. Firstly, the signal oriented idea is introduced and the blocked dual Gabor dictionaries are constructed, finishing the block sparse representation. By introducing the blocked dictionaries, the measurement matrix is constructed and the block e-coherence restricted by the coherence of the dictionaries is proposed. Consequently, the synthesis model for signal representation is introduced to subspace detection based on Multiple Measurement Vector problem and the Simultaneous Orthogonal Matching Pursuit is proposed based on blocked e-closure(,B FSOMPe), using for subspace detection. Additionally, the convergence of the algorithm is proved. At last, simulation experiments prove that the new method improves the recovery rate, decreases the channel numbers and enforces the robustness of the sampling system compared with the traditional methods.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第12期2877-2884,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61372039)~~
关键词 信号处理 Gabor字典 相干性 欠采样 子空间 Signal processing Gabor dictionaries Coherence Sub-Nyquist sampling Subspace
  • 相关文献

参考文献22

  • 1Park S and Park J.Compressed sensing MRI exploiting complementary dual decomposition[J].Medical Image Analysis,2014,18(3):472-486.
  • 2王忠良,冯燕,贾应彪.基于线性混合模型的高光谱图像谱间压缩感知重构[J].电子与信息学报,2014,36(11):2737-2743. 被引量:3
  • 3张京超,付宁,乔立岩,彭喜元.一种面向信息带宽的频谱感知方法研究[J].物理学报,2014,63(3):69-79. 被引量:10
  • 4Omer B and Eldar Y C.Sub-Nyquist radar via doppler focusing[J].IEEE Transactions on Signal Processing,2014,62(7):1796-1811.
  • 5Herman M A and Strohmer T.High-resolution radar via compressed sensing[J].IEEE Transactions on Signal Processing,2009,57(6):2275-2284.
  • 6Razzaque M A,Bleakley C,and Dobson S.Compression in wireless sensor networks:a survey and comparative evaluation[J].ACM Transactions on Sensor Networks,2013,10(1):Article No.5.
  • 7Michaeli T and Eldar Y C.Xampling at the rate of innovation[J].IEEE Transactions on Signal Processing,2012,60(3):1121-1133.
  • 8Urigiien J A,Eldar Y C,and Dragotti P L.Compressed Sensing:Theory and Applications[M].Cambridge,U.K.:Cambridge University Press,2012:148-213.
  • 9Matusiak E and Eldar Y C.Sub-Nyquist sampling of short pulses[J].IEEE Transactions on Signal Processing,2012,60(3):1134-1148.
  • 10陈鹏,孟晨,孙连峰,王成,杨森.基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构[J].物理学报,2015,64(7):160-170. 被引量:3

二级参考文献72

  • 1计振兴,孔繁锵.基于谱间线性滤波的高光谱图像压缩感知[J].光子学报,2012,41(1):82-86. 被引量:12
  • 2Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 1 (in Chinese).
  • 3Chen Q, Jiang J J, Bie S W, Wang P, Liu P, Xu X X 2011 Acta Phys. Sin. 60 7 (in Chinese).
  • 4Li J, Wen G J, Huang Y J, Wang P, Sun Y H 2013 Acta Phys. Sin. 62 8 (in Chinese).
  • 5Sun B, Jiang J J 2013 Acta Phys. Sin. 60 11 (in Chinese).
  • 6Liu Y, Peng Q C, Shao H Z, Peng Q H, Wang L 2013 Acta Phys. Sin. 62 7 (in Chinese).
  • 7Zheng S L, Yang X N 2013 Acta Phys. Sin. 62 7 (in Chinese).
  • 8Zu Y X, Zhou J 2012 Chin. Phys. B 21 1.
  • 9Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 11.
  • 10Bao D, Vito L, Rapuano S 2013 IEEE Trans. Instrum. Meas. 62 7.

共引文献11

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部