期刊文献+

基于多源知识和Ranking SVM的中文微博命名实体链接 被引量:7

Chinese Micro-blog Named Entity Linking Based on Multisource Knowledge
下载PDF
导出
摘要 命名实体是文本中承载信息的重要单元,正确分析存在歧义的命名实体对文本的理解起着关键性作用。该文提出基于多源知识和Ranking SVM的中文微博命名实体链接,结合同义词词典、百科资源等知识产生初始候选实体集合,同时从文本中抽取多种组合特征,利用Ranking SVM对候选实体集合进行排序,从而得到目标实体。在NLP&CC20141中文微博实体链接评测数据集上进行了实验,获得了89.40%的平均准确率,与NLP&CC2014中文微博实体链接评测取得最好成绩的系统相比,本文的系统具有一定的优势。 Named entity is an important component conveying information in texts, and an accurate understanding of named entities is necessary to ensure a correct analysis of the text information. This paper proposes a Chinese microblog entity linking strategy based on multi-resource knowledge under Ranking SVM framework. It combines a dictionary of synonyms, the encyclopedia resources to produce an initial set of candidate entities , then extracts various combinations of featuresfor Ranking SVM to generate the target entity set. The evaluation on data sets of NLP&CC2014 Chinese micro-blog entity linking track shows a micro average accuracy of 89.40%, which is better than the state-of-the-art result.
出处 《中文信息学报》 CSCD 北大核心 2015年第5期117-124,共8页 Journal of Chinese Information Processing
基金 国家社会科学基金(14BYY096) 国家自然科学基金(61402419 61272221) 国家高技术研究发展863计划(2012AA011101) 国家重点基础研究发展计划973课题(2014CB340504)
关键词 命名实体 中文微博实体链接 同义词词典 百科资源 RANKING SVM 语义特征 named entity chinese micro-hlog entity linking dictionary of synonyms encyclopedia resources Ranking SVM semantic features
  • 相关文献

参考文献21

  • 1中国互联网信息中心.第35次中国互联网络发展状况统计报告[R].2015-1.
  • 2郭宇航,秦兵,刘挺,李生.实体链指技术研究进展[J].智能计算机与应用,2014,4(5):9-13. 被引量:7
  • 3Mihalcea R, Csomai A. Wikify! Linking Documents to Encyclopedic Knowledge[C]//Proceedings of the 16th ACM Conference on Information and Knowledge Management. Association for Computing Machinery, 2007: 233-242.
  • 4Milne D, Witten I H. Learning to Link with Wikipedia[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management. Association for Computing Machinery, 2008: 509-518.
  • 5Bunescu R C, Pasca M. Using Encyclopedic Knowledge for Named Entity Disambiguation[C]//Proceedings of the 11st Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2006:9-16.
  • 6Cucerzan S. Large-Scale Named Entity Disambiguation Based on Wikipedia Data[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 2007:708-716.
  • 7Gottipati S, Jiang J. Linking Entities to a Knowledge Base with Query Expansion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011: 804-813.
  • 8Sun Y, Zou X, Lin L, et al. ITNLP Entity Linking System at TAC 2013[C]//Proceedings of Text Analysis Conference. United States National Institute of Standards and Technology, 2013.
  • 9Zhang W, Sim Y C, Su J, et al. Nus-i2r: Learning a Combined System for Entity Linking[C]//Proceedings of Text Analysis Conference. United States National Institute of Standards and Technology, 2010.
  • 10Varma V, Bysani P, Kranthi Reddy V B, et al. IIIT Hyderabad at TAC 2009[C]//Proceedings of Test Analysis Conference. U.S. National Institute of Standards and Technology, 2009.

二级参考文献1

  • 1George A. Miller,Walter G. Charles.Contextual correlates of semantic similarity[J].Language and Cognitive Processes.1991(1)

共引文献13

同被引文献58

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部