期刊文献+

离散时间SM[K]/PH[K]/1/FCFS排队系统的年龄过程改进分析

Analysis and Improvement of the Age Process in a Queuing System of Discrete Time SM[K]/PH[K]/1/FCFS
下载PDF
导出
摘要 基于一个离散时间的排队系统:顾客有着多种类型,成批到达,到达过程是一个半马尔可夫过程,按照先来先服务的准则,并且每一个顾客的服务时间服从各自的PH分布。对这个离散时间SM[K]/PH[K]/1/FCFS排队系统年龄过程进行了详细分析,引进一些附加变量构造一个关于年龄过程的马尔可夫链,从而计算出年龄过程的转移矩阵。 We studied a discrete time queuing system with multiple types of customers and a first-come-first-served(FCFS)service discipline. Customers arrive according to a semi-Markov arrival process and the service times of individual customers have PH-distributions. We studied SM[K]/PH[K]/1/FCFS queue and analyzed its generalized age process particularly. We introduced some auxiliary variables to construct a Markov chain associated with ag(t) and obtained the transition probability matrix of this Markov chain.
作者 高卓 徐德举
出处 《山东农业大学学报(自然科学版)》 CSCD 2015年第6期923-926,共4页 Journal of Shandong Agricultural University:Natural Science Edition
基金 广东高校优秀青年创新人才培养计划项目(自然科学)(2013LYM_0117)
关键词 排队系统 年龄过程 马尔可夫链 转移矩阵 Queuing systems age process Markov chain the transition probability matrix
  • 相关文献

参考文献6

  • 1高卓.离散时间SM[K]/PH[K]/1/FCFS排队系统的研究[J].科技信息,2014(5):7-7. 被引量:3
  • 2He Qi-ming. Age process, Workload Process, Sojourn Times, and Waiting Times in a Discrete Time SM[K]/PH[K]/1/FCFS Queue[J]. Queuing Systems, 2005,49(1):363-403.
  • 3Van Houdt B, Blondia C. The waiting time distribution of a type k customer in a discrete time MMAP[K]/PH[K]/c(c=I,2) queue using QBDs[J]. Stochastic models, 2004,20(1):55-69.
  • 4刘次华,何少锋.批量到达的离散时间排队系统[J].华中科技大学学报(自然科学版),2005,33(10):106-108. 被引量:5
  • 5Janssen AJEM, Van Leeuwaarden JSH. Analytic computation schemes for the discrete-time bulk service queue[J]. Queueing Systems, 2005,50(2-3): 14 I- 163.
  • 6Marcel F Neuts. Matrix-geometric solutions in stochastic models[M]. Baltimore and London: The Johns Hopkins University Press, 1981.

二级参考文献9

  • 1刘次华,何少锋.批量到达的离散时间排队系统[J].华中科技大学学报(自然科学版),2005,33(10):106-108. 被引量:5
  • 2Meisling T. Discrete time queueing theory[J]. Opns Res, 1958(6): 96-105.
  • 3Hunter J. Mathematical technique of applied probability(Vol.2)[M]. New York: Academic Press, 1983.
  • 4Ross M. Stochastic processes[M]. Second edition. New York: John Wiley & Sons, 1997.
  • 5Kleinrock L, Gail R. Queueing systems: problems and solutions[M]. New York: John Wiley & Sons, 1996.
  • 6A. J. E. M. Janssen,J. S. H. Leeuwaarden.Analytic Computation Schemes for the Discrete-Time Bulk Service Queue[J].Queueing Systems (-).2005(2-3)
  • 7Qi-Ming He.Age Process, Workload Process, Sojourn Times, and Waiting Times in a Discrete Time SM[K]/PH[K]/1/FCFS Queue[J].Queueing Systems (-).2005(3-4)
  • 8Marcel F.Neuts.Matrix-geometric solutions in stochastic models[]..
  • 9Van Houdt, B.,Blondia, C.The Waiting Time Distribution of a Type k Customer in a Discrete-Time MMAP[K]/PH[K]/c (c = 1, 2) Queue Using QBDs[].Stochastic Models.2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部