期刊文献+

高分一号卫星影像特征及其在草地监测中的应用 被引量:26

Characteristics and Application of GF-1 Image in Grassland Monitoring
下载PDF
导出
摘要 为评价高分一号卫星数据的草地监测能力,在分析传感器波段设置、辐射分辨率和光谱响应系数等特征的基础上,以草地为研究对象,提取草地分布信息,计算不同植被指数,结合地面同步观测的草地光谱、地上生物量、覆盖度和叶面积指数等实测数据,通过R^2和均方根误差筛选并建立最优估算模型。结果表明:波段设置与部分常用传感器保持了较好的一致性;空间分辨率的提高,增强了地物类型的识别能力,辐射分辨率的提高,增强了数据的层次性;光谱响应系数较好的涵盖了不同草地类型的光谱曲线特征;叶面积指数和生物量的最佳估算模型均为基于比值植被指数的三次多项式模型,覆盖度最佳估算模型为基于归一化植被指数的幂函数模型,并得到了较好的制图效果。 In order to evaluate the monitoring ability of GF-1 image in grassland,on the basis of analysis of the characteristics of the band setting,radiometric and spectral response coefficient of sensor,the distributed information was extracted,and the vegetation index of grassland was calculated.With the combination of field-measured spectrum,vegetation coverage,leaf area index and aboveground biomass data,the best vegetation index for grassland parameters was estimated.The optimal model was determined according to R2 and RMSE(root-mean-square error).The results showed that GF-1 sensors kept consistency in band set comparing with other sensors.The improvement of spatial resolution enhanced the identification ability of object types,and the improvement of radiation resolution enhanced the levels of data.The spectral response coefficients covered better the spectral curves of different types of grassland.The correlation of different grassland vegetation parameters and GF-1 vegetation index reached a high level,and met the needs of remote sensing estimation or inversion.The regression analyses showed that the best estimation model for LAI and the biomass of the grassland were cubic polynomial regression model based on RVI(ratio vegetation index),and the best estimation model for the vegetation coverage of the grassland were power function model based on NDVI(normalized difference vegetation index),and the good mapping effect of the research region was obtained.
出处 《草地学报》 CAS CSCD 北大核心 2015年第5期1093-1100,共8页 Acta Agrestia Sinica
基金 国家科技重大专项(30-Y20A01-9003-12/13) 全球变化研究国家重大科学研究计划项目课题(2010CB951503) 国家重点基础研究发展计划(973计划)课题(2012CB723206) 国家"十二五"科技支撑计划课题(2011BAC07B03)资助
关键词 高分一号 植被指数 草地监测 遥感估算 影像特征 GF-1 sensor Vegetation index Grassland monitoring Remote sensing estimation Image characteristics
  • 相关文献

参考文献32

  • 1Chen J M,Cihlar J.Retrieving leaf area index of boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment,1996,55(2):153-162.
  • 2Pu R L,Gong P.Hyperspectral remote sensing and its Appli-cation[M].Beijing:High Education Press,2000:70.
  • 3Fang H,Liang S.Retrieving leaf area index with a neural network method:Simulation and validation[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2052-2062.
  • 4Anaya J A,Chuvieco E,Palacios-Orueta A.Aboveground biomass assessment in Colombia:A remote sensing approach[J].Forest Ecology and Management,2009,257(4):1237-1246.
  • 5Scurlock J,Hall D.The global carbon sink:a grassland Per-spective[J].Global Change Biology,1998,4(2):229-233.
  • 6方精云,杨元合,马文红,安尼瓦尔·买买提,沈海花.中国草地生态系统碳库及其变化[J].中国科学:生命科学,2010,40(7):566-576. 被引量:177
  • 7梁顺利,李小文,王锦地,等.定量遥感理念与算法[M].北京:科学出版社,2013:321-322.
  • 8Tueller P T.Remote sensing technology for rangeland management applications[J].Journal of Range Manage,1989,42(6):442-453.
  • 9Taylor B F,Dini P W,Kidson J W.Determination of seasonal and interannual variation in New Zealand pasture growth from NOAA 7 data[J].Remote Sensing of Environment,1985,18(2):177-192.
  • 10陈全功,卫亚星,梁天刚.NOAA/AVHRR 资料用于草原监测的研究[J].中国农业资源与区划,1998,19(5):29-33. 被引量:4

二级参考文献141

共引文献878

同被引文献441

引证文献26

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部