期刊文献+

基于有限差分的化学剂平面运移规律数值模拟 被引量:1

Numerical Simulation of Chemical Planar Transport Based on Finite Difference Method
下载PDF
导出
摘要 在化学驱中,各种化学剂在地层中的浓度对于驱油是极为关键的,理想的情况是合理设计化学剂注入参数(注入浓度、注入量和注入速度),使得地层各处化学剂的浓度接近实验室设计的最佳浓度,从而驱油效率最高。化学剂在地层中除正常的对流外,还会发生扩散和吸咐,而平面渗流中,各处渗流速度的不同,使得化学剂在平面的浓度分布比一维情况复杂得多。依据有限差分法和雅可比迭代方法,根据达西渗流定律确定平面渗流速度场和压力场分布,再根据已求得的速度场结合化学剂运移的对流弥散方程,求解得到了化学剂的浓度场。数值模拟结果给出了不同时刻化学剂在地层中的浓度分布,并针对不同的运移滞后系数、弥散系数和化学剂注入量,分析了这些参数对于化学剂分布的影响。 In the chemical flooding process,the concentration distribution of chemical agents is essential for the displacement of oil.The ideal situation would entail carefully designed chemical injection parameters(injection concentration,injection volume and injection rate) so that the chemical agent concentration in the formation is close to the optimum concentration determined by laboratory tests,and thus achieving the most efficient oil displacement results.In addition to normal convection of chemical agents in the formation,diffusion and adsorption will also happen.While for planar percolation flow,the different percolation flow velocity leads to the chemical planar concentration being more complex than that of one dimension.In this paper,based on the Finite Difference Method(FDM) and Jacobian Method,according to Darc/s law,planar flow velocity and pressure field are determined.And combined with the solved velocity field equation and the chemical agent transport convection-diffusion equation,the concentration field of chemical agents is solved.Simulation results show chemical concentration at the different time.It also studies the influence on the distribution of chemical flooding for different parameters including migration-lag coefficient,dispersion coefficient and the volume of chemical injection.
出处 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期112-118,共7页 Journal of Southwest Petroleum University(Science & Technology Edition)
基金 国家自然科学基金(51174170)
关键词 化学驱 数值模拟 有限差分 耦合方程 运移 chemical flooding numerical simulation finite difference coupling equation transport
  • 相关文献

参考文献16

  • 1Fanchi JR.Principles of applied reservoir simulation[M],San Diego:Elsevier,2006.
  • 2Mollaei A,Lake L W,Delshad M.Application and variance based sensitivity analysis of surfactant-polymer flooding using modified chemical flood predictive model[J].Journal of Petroleum Science and Engineering,2011,79(1):25-36.
  • 3Sedaghat M H,Ghazanfari M H,Masihi M,et al.Experimental and numerical investigation of polymer flooding in fractured heavy oil five-spot systems[J].Journal of Petroleum Science and Engineering,2013,108:370-382.
  • 4Delshad M,Kim D H,Magbagbeola O A,et al.Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efflciency[C].SPE 113620,2008.
  • 5饶良玉,韩冬,吴向红,王强.中低渗油藏化学驱方案优化与矿场对比评述[J].西南石油大学学报(自然科学版),2012,34(5):107-113. 被引量:6
  • 6靖波,张健,吕鑫,姜维东,冯国智.聚–表二元驱油体系性能对比研究[J].西南石油大学学报(自然科学版),2013,35(1):155-159. 被引量:8
  • 7Gillatt J,Julian K,Brett K,et al.The microbial resistance of polymer dispersions and the efficacy of polymer dispersion biocides—A statistically validated method[J].International Biodeterioration&Biodegradation,2015,104:32-37.
  • 8Baker L E.Effects of dispersion and dead-end pore volume in miscible flooding[C].SPE 5632,1977.
  • 9Bhuyan D,Lake L W,Pope G A.Mathematical modeling of high-pH chemical flooding[C].SPE 17398,1988.
  • 10Bhuyan D.Development of compositional reservoir simulator[D].Austin:Dissertation UT,1989.

二级参考文献38

  • 1王红艳,叶仲斌,张继超,曹绪龙.复合化学驱油体系吸附滞留与色谱分离研究[J].西南石油学院学报,2006,28(2):64-66. 被引量:23
  • 2孙焕泉.胜利油田三次采油技术的实践与认识[J].石油勘探与开发,2006,33(3):262-266. 被引量:163
  • 3黄延章 于大森.化学驱油过程中碱剂的传输与消耗.化学驱油技术中基础研究学术会议论文集[M].北京:-,1996.72-73.
  • 4Bailey H R, Gogarty W B. Diffusion coefficient from capillary flow[ J]. SPE 302,1963.
  • 5Perkins T K, Johnston O C. A review of diffusion and dispersion in porous media [ J ]. SPE 480, 1963.
  • 6Brigham W E. Mixing equation in short laboratory cores [ J ]. SPE 4256,1972.
  • 7Baker L E. Effects of dispersion and dead-end pore volume in miscible flooding [ J ]. SPE 5632, 1977.
  • 8刘慈群 杨瑜.化学输运问题及其数值模拟方法.力学学报,1987,19:17-21.
  • 9刘慈群.溶液渗流时吸附问题的特征线解.力学与实践,1984,5(2):15-16.
  • 10刘慈群 杨价 刘毓湘.溶质输运问题的数值反演解.力学学报,1986,(5):15-20.

共引文献43

同被引文献37

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部