期刊文献+

预测气液两相分层流界面剪切应力的新方法 被引量:2

A New Method for Predicting Interfacial Shear Stress of Stratified Gas-liquid Two-phase Flow
下载PDF
导出
摘要 针对水平管气液两相分层流界面剪切应力的预测,建立了基于计算流体力学(CFD)方法的剪切滑移壁面模型,即将气液界面处理为固定的具有均匀剪切应力的水平滑移壁面。利用FLUENT软件模拟了气相流动,气液界面采用剪切滑移壁面边界条件,通过对比实验测量的气相流场分布得到气速和界面剪切收敛值,并由收敛值拟合得到界面摩擦因子与气相雷诺数的关联式。应用这一关联式的预测结果与实验间接测量值吻合较好,并且在气、液相雷诺数9 400≤ReG≤50 000和21 000≤Re_L≤30 000范围内优于Taitel和Dukler与Sidi-Ali和Gatignol模型。表明剪切滑移壁面模型可以有效地控制关键参数,提高预测效率和精度,为CFD方法预测气液两相分层流界面剪切应力提供了新的思路。 A new Slip-shear wall model based on computational fluid dynamics(CFD) for predicting the interfacial shear stress of stratified gas-liquid two-phase flow in horizontal pipe is established in this paper,in which the interface is considered as a flat slip wall with uniform shear stress.The gas flow field is simulated by FLUENT.Compared with experimental values of gas velocity properties,the convergence values of gas flow rate and interfacial shear stress are obtained,and a new constitutive relation of interfacial friction factor and gas Reynolds number is deduced from the convergence values fitting.And the interfacial shear stress is predicted,which is in good agreement with the experimental data,and better than that of Taitel Dukler and SidiAli Gatignol models when the gas Reynolds number is from 9 400 to 50 000 and the liquid Reynolds number is from 21 000 to 30 000.The results show that the slip-shear-wall model can control the key parameters effectively,improve the prediction efficiency and accuracy,and provide a new approach to the prediction of interfacial shear stress of stratified gas-liquid flow by CFD.
出处 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期119-126,共8页 Journal of Southwest Petroleum University(Science & Technology Edition)
关键词 气液两相分层流 CFD 界面摩擦因子 界面剪切应力 剪切滑移壁面模型 stratified gas-liquid two-phase flow CFD interfacial friction factor interfacial shear stress slip-shear-wall model
  • 相关文献

参考文献22

  • 1Ullmann A,Brauner N.Closure relations for two-fluid models for two-phase stratified smooth and stratified wavy flows[J].International Journal of Multiphase Flow,2006,32(1):82-105.
  • 2Vlachos N A,Paras S V,Karabelas A J.Prediction of holdup,axial pressure gradient and wall shear stress in wavy stratified and stratified/atomization gas/liquid flow[J].International Journal of Multiphase Flow,1999,25(2):365-376.
  • 3Mouza A A,Paras S V,Karabelas A J.CFD code application to wavy stratified gas-liquid flow[J].Chemical Engineering Research&Design,2001,79(5):561-568.
  • 4Taitel Y,Dukler A E.A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J].AIChE Journal,2004,22(1):47-55.
  • 5Taitel Y,Dukler A E.A theoretical approach to the Lockhart-Martinelli correlation for stratified flow[J].International Journal of Multiphase Flow,1976,2(76):591-595.
  • 6Line A,Lopez D.Two-fluid model of wavy separated twophase flow[J].International Journal of Multiphase Flow,1997,23(6):1131-1146.
  • 7Shoham O,Taitel Y.Stratified turbulent-turbulent gasliquid flow in horizontal and inclined pipes[J].AIChE Journal,1984,30(3):337-385.
  • 8Issa R I.Prediction of turbulent,stratified,two-phase flow in inclined pipes and channels[J].International Journal of Multiphase Flow,1988,14(2):141-154.
  • 9Spedding P L,Spence D R.Flow regimes in two-phase gas-liquid flow[J].International Journal of Multiphase Flow,1993,19(2):245-280.
  • 10Kowalski J E.Wall and interfacial shear stress in stratified flow in a horizontal pipe[J].AIChE Journal,1987,33(2):274-281.

同被引文献29

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部