期刊文献+

三维氮掺杂石墨烯对水中铅和镉的吸附 被引量:4

Absorption of Pb^(2+) and Cd^(2+) in Water Using 3D Nitrogen-doped Graphene
下载PDF
导出
摘要 采用多巴胺(DA)作为还原剂和功能化试剂,进行了氧化石墨烯的功能化,制备了三维结构的氮掺杂石墨烯材料(rGO-DA)。与还原性氧化石墨烯(rGO)对比,rGO-DA具有更大的吸附容量。rGO-DA对Pb^(2+)和Cd^(2+)的吸附容量分别为91.4,43.5 mg/g。考察了吸附时间、pH值、初始浓度对Pb^(2+)和Cd^(2+)吸附效果的影响。结果表明,rGO-DA对Pb^(2+)和Cd^(2+)吸附达到平衡的时间为120 min,最佳pH值为5.0。在Pb^(2+)和Cd^(2+)初始浓度小于30μg/m L时,二者的吸附去除率分别为100%和87.7%。在吸附Pb^(2+),Cd^(2+)后,rGO-DA可轻松从水体中移除。用HCl脱附,循环使用3次后,rGO-DA对Pb^(2+)和Cd^(2+)的吸附容量无明显变化,可再生并重复使用。 An approach was presented for the preparation of 3D nitrogen-doped graphene( 3D r GO-DA) using dopamine( DA) as both reductant and functionalizing agents. Compared with reduced graphene oxide( r GO),the 3D rGO-DA shows an excellent absorption ability toward Pb^(2+)and Cd^(2+).The adsorption capacities of 3D rGO-DA toward Pb^(2+)and Cd^(2+)were found to be 91. 4 mg / g and43. 5 mg / g,respectively. The effect factors,including adsorption times,pH values and initial concentrations of Pb^(2+)and Cd^(2+),were studied. Adsorption time of 120 min and pH 5. 0 was found to be the suitable condition for Pb^(2+)and Cd^(2+)adsorption. The removal efficiency of Pb^(2+)and Cd^(2+)reached maximum value of 100% and 87. 7% at the initial concentration lower than 30 μg / m L,respectively. After 3 cycle absorption / desorption,the 3D rGO-DA still remained an excellent absorptive capacity,and could be easily removed from water with HCl after adsorption process,indicating its applicability in the water purification.
出处 《分析测试学报》 CAS CSCD 北大核心 2015年第12期1348-1353,共6页 Journal of Instrumental Analysis
基金 厦门市科技局高校创新项目(3502Z20143025) 国家自然科学基金项目(21375112) 福建省教育厅2014年福建省高等学校教师国内访问学者项目
关键词 三维石墨烯 氮掺杂 3D graphene Pb2+ Cd2+ nitrogen-doped
  • 相关文献

参考文献38

  • 1唐逢杰,张凤,金庆辉,赵建龙.石墨烯修饰铂电极传感器测定水中微量重金属镉和铅[J].分析化学,2013,41(2):278-282. 被引量:24
  • 2许春萱,吴志伟,曹凤枝,高滢滢.羧基化石墨烯修饰玻碳电极测定水样中的痕量铅和镉[J].冶金分析,2010,31(8):30-34. 被引量:33
  • 3Khin M M, Nair A S, Babu V J, Murugan R, Ramakrishna S. Energy Environ. Sci. , 2012, 5(8) : 8075 -8109.
  • 4Fu F L, Wang Q. J. Environ. Manage. , 2011, 92:407 -418.
  • 5Gupta V K, Carrott P J M, Ribeiro Carrott M M L, Suhas. Crit. Rev. Environ. Sci. Technol. , 2009, 39(10) : 783 -842.
  • 6Repo E K. Warchol J, Bhatnagar A, Sillanpaa M. J. Colloid Interface Sci. , 2011, 358(1) : 261 -267.
  • 7Cao C Y, Qu J, Wei F, Liu H, Song W G. ACS Appl. Mater. Interfaces, 2012, 4(8) : 4283 -4287.
  • 8Zhai T, Xie S L, Lu X H, Xiang L, Yu M H, Li W, Liang C L, Mo C H, Zeng F, Luan T G, Tong Y X. Langmuir, 2012, 28(30) : 11078 -11085.
  • 9ZhangY, LiYF, YangLQ, MaX J, WangLY, YeZF. J. Hazard. Mater., 2010, 178(1): 1046-1054.
  • 10Guo J, Wang R Y, Tjiu W W, Pan J S, Liu T X. J. Hazard. Mater. , 2012, 225/226:63 -73.

二级参考文献84

共引文献80

同被引文献14

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部