期刊文献+

XDLVO理论解析有机物和钙离子对纳滤膜生物污染的影响 被引量:13

Impact of organic matter and calcium on nanofiltration membrane biofouling:XDLVO approach
下载PDF
导出
摘要 为了揭示有机物和ca^(2+)浓度对纳滤膜生物污染的影响机制,选用铜绿假单胞菌(PA)为模式菌株,海藻酸钠(SA),牛血清白蛋白(BSA)和腐殖酸(HA)为典型废水有机物,采用extended derjaguin-landau-verwey-overbeek(XDLUO)理论定量解析了不同进水条件下膜预处理和生物污染过程的界面相互作用结果表明,Ca^(2+)浓度为5mmol/L时,SA预处理后膜面亲水性最强,粘聚自由能高达42.96mJ/m^2,与PA、SA的界面自由能最高,分别为45.85和39.64mJ/m^2,抑制膜的生物污染.而Ca^(2+)浓度为2mmol/L时,BSA预处理后膜面疏水性最强,粘聚自由能低至-40.32mJ/m^2,与PA、BSA的界面自由能最低,分别为3.49和-6.36mJ/m^2,促进膜的生物污染所有污染过程中,范德华作用能差异较小,而静电作用能绝对值极小,贡献微弱,有机物和Ca^(2+)浓度对膜生物污染的影响主要体现在对疏水作用能的影响. The extended derjaguin-laudau-verwey-overbeek(XDLVO) theory was utilized to quantitatively evaluate the interfacial interactions in organic conditioning and biofouling of nanofiltration membrane under various organic matter and Ca^2+ concentrations.Pseudomonas aeruginosa(PA) was selected as the model bacterium,and sodium alginate(SA),bovine serum albumin(BSA),and humic acid(HA) were selected as model organics in wastewater.Results showed that SA conditioned membranes have the strongest hydrophilicity and the biggest interfacial free energies with PA and SA at5mmol/L Ca^2+,with a △G_(coh) of 42.96mJ/m2 and △G_(adh) of 45.85 and 39.64mJ/m^2,respectively.This condition inhibited the biofouling of membranes.However,BSA conditioned membranes have the strongest hydrophobicity and the lowest interfacial free energies with PA and BSA at 2mmol/L Ca^2+,with a △Gcoh of-40.32mJ/m^2 and △Gadh of 3.49 and-26.36mJ/m^2,respectively.This condition accelerated the biofouling of membranes.In all membrane fouling processes,vander Waals interactions changed slightly,whereas electrostatic double layer interactions contributed minimally to fouling with a low absolute value.Organic matter and Ca^2+ affected the membrane biofouling mainly through the alteration of hydrophobic interactions.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2015年第12期3602-3611,共10页 China Environmental Science
基金 国家自然科学基金青年基金项目(51108230) 国家“863”计划(2012AA063407)
关键词 XDLVO理论 有机预吸附 钙离子 纳滤膜 生物污染 XDLVO theory orgianic coditioning calcium ion nanofiltration membrane biofouling
  • 相关文献

参考文献35

  • 1Ivnitsky H, Katz I, Minz D, et al. Characterization of membrane biofouling in nanofiltration processes ofwastewater treatment [J]. Desalination, 2005,185:255-268.
  • 2Ivnitsky H, Minz D, Kautsky L, et al. Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment [J]. Journal of Membrane Science, 2010,360:165 173.
  • 3Yu C, Wu J, Contreras A E, et al. Control of nanofiltmtion membrane biofouling by Pseudomonas aeruginosa using d-tyrosine [J]. Journal of Membrane Science, 2012,423-424:487-494.
  • 4Flemming H C. Biofouting in water systems cases, causes and [J]. Appl Microbiol Biotechnol, 2002,59:629-640.
  • 5Subramani A, Hoek E M V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes [J]. Journal of Membrane Science, 2008,319:111-125.
  • 6Jeong S, Kim S J, Kim L H, et al. Foulant analysis of a reverse osmosis membrane used pretreated seawater [J]. Journal of Membrane Science, 2013,428:434-444.
  • 7Herzberg M, Kang S, Elimelech M. Role of Extraceltular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes [J]. Environmental Science and Technology, 2009, 43:4393-4398.
  • 8Subramani A, Huang X F, Hock E M V. Direct observation of bacterial deposition onto clean and organic fouled polyamide membranes [J]. Journal of Colloid and Interface Science, 2009,336:13-20.
  • 9Xiao K, Wang X, Huang X, et al. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration [J]. Journal of Membrane Science, 2011,373:140-151.
  • 10Ding Y, Tian Y, Li Z, et al. Interaction energy evaluation of the role of solution chemistry and organic foulant composition on polysaceharide fouling of microfiltration membrane bioreactors [J]. Chemical Engineering Science, 2013,104:1028-1035.

二级参考文献53

  • 1Tang C Y,Kwon Y N,Leckie J O.The role of foulant-foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—Theoretical basis,experimental evidence,and AFM interaction force measurement[J].Journal of Membrane Science,2009,326(2):526-532.
  • 2Bartels C R,Wilf M,Andes K,et al.Design considerations for wastewater treatment by reverse osmosis[J].Water Science and Technology,2005,51(6-7):473-482.
  • 3Dalvi A G I,Al-Rasheed R,Javeed M A.Studies on organic foulants in the seawater feed of reverse osmosis plants of SWCC[J].Desalination,2000,132(1-3):217-232.
  • 4Ning R Y.Reverse osmosis process chemistry relevant to the Gulf[J].Desalination,1999,123(2-3):157-164.
  • 5Tang C Y,Kwon Y N,Leckie J O.Fouling of reverse osmosis and nanofiltration membranes by humic acid—Effects of solution composition and hydrodynamic conditions[J].Journal of Membrane Science,2007,290(1-2):86-94.
  • 6Lee S,Elimelech M.Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces[J].Environmental Science and Technology,2006,40(3):980-987.
  • 7Yang Q F,Liu Y Q,Li Y J.Humic acid fouling mitigation by antiscalant in reverse osmosis system[J].Environmental Science and Technology,2010,44(13):5153-5158.
  • 8Brant J A,Childress A E.Assessing short-range membrane-colloid interactions using surface energetics[J].Journal of Membrane Science,2002,203(1-2):257-273.
  • 9Childress A E,Elimelech M.Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J].Journal of Membrane Science,1996,119(2):253-268.
  • 10Sze A,Erickson D,Ren L Q,et al.Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow[J].Journal of Colloid and Interface Science,2003,261(2):402-410.

共引文献22

同被引文献62

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部