期刊文献+

纳米晶Cu-50Ag合金在酸性溶液中腐蚀行为研究 被引量:1

Corrosion Behavior of Nanocrystalline Bulk Cu-50Ag Alloys in Acidic Solutions
原文传递
导出
摘要 与粉末冶金法(PM)制备的常规尺寸合金对比,研究了通过热压液相还原法(LPR)和机械合金化法(MA)合成的Cu-50Ag合金粉末制备的块体纳米晶Cu-50Ag合金在酸性溶液中的腐蚀行为。结果表明:在Na_2SO_4溶液中加入H_2SO_4后,3种合金的腐蚀速度均加快。随着H_2SO_4浓度的增加,PMCu-50Ag和LPRCu-50Ag合金的腐蚀速度均未发生明显变化,而MACu-50Ag合金的腐蚀速度则加快。在Na_2SO_4溶液中,3种合金均未出现钝化现象,随着H_2SO_4的加入,合金出现了钝化现象。3种合金的腐蚀速率按PMCu-50Ag,LPRCu-50Ag和MACu-50Ag合金的顺序增加,其中LPRCu-50Ag合金的腐蚀速度略大于PMCu-50Ag合金,但明显小于MACu-50Ag合金。 The corrosion behavior of two nanocrystalline bulk Cu-50 Ag alloys prepared from hot pressing powders which were synthesized by liquid phase reduction or mechanical alloying was investigated in acidic solutions as compared with the corresponding coarse grained Cu-50 Ag alloy.Results show that the corrosion rates of the three alloys become faster after H2SO4 is added to Na2SO4 solutions.The corrosion rates of PMCu-50 Ag and LPRCu-50 Ag alloys remain unchanged,but those of MACu-50 Ag alloy become faster with the increment of H2SO4 solution concentrations.In Na2SO4 solutions,there are no passivation phenomena for three Cu-50 Ag alloys.On the contrary,there are passivation phenomena after H2SO4 is added to Na2SO4 solutions.The corrosion rates of three Cu-50 Ag alloys increase in the order of PMCu-50 Ag,LPRCu-50 Ag and MACu-50 Ag alloys.The rates of LPRCu-50 Ag alloy are slightly higher than those of PMCu-50 Ag alloy,but are evidently lower than those of MACu-50 Ag alloy.In Na2SO4 solutions,EIS of three alloys are composed of single capacitive loops.There are diffusion tails after H2SO4 is added to Na2SO4 solutions.This indicates the corrosion processes are controlled by diffusion.
机构地区 沈阳师范大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第11期2836-2841,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51271127) 辽宁省高等学校优秀人才支持计划(LR2011032)
关键词 CU-AG合金 双相组织 纳米晶 腐蚀电化学 Cu-Ag alloys two-phase microstructure nanocrystalline electrochemical corrosion
  • 相关文献

参考文献6

二级参考文献41

  • 1牛新平,王昕,马胜利,徐可为,刘维民.磁控溅射制备Ti-Si-N纳米薄膜的摩擦磨损性能[J].稀有金属材料与工程,2005,34(12):1882-1885. 被引量:3
  • 2Jia J.Z.,Zhang Q.F.,Li Z.C.,Zhang X.Y.,and Qiu L.J.,2006,Genoplasmics:a fusion of genomics with plant germplasm research,Submitted
  • 3Liu S.B.,Zhou R.H.,Dong Y.C.,Li P.,and Jia J.Z.,2006,Development,utilization of introgression lines using a synthetic wheat as donor,Theor.Appl.Genet.,112:1360-1373
  • 4Zhou R.H.,Zhu Z.D.,Kong X.Y.,Huo N.X.,Tian Q.Z.,Li P.,Jin C.Y.,Dong Y.C.,and Jia J.Z.,2005,Development of wheat near-isogenic lines for powdery mildew resistance,Theor.Appl.Genet.,110:640-648
  • 5SURYANARAYANA C. Nanorystalline materials[J]. InterMaterRev, 1995,40 : 41-64.
  • 6Yang Y,Keunecke Y,Stein C et al.Surface and Coatings Technology[J],2012,206:2661.
  • 7Rachbauer R,Blutruager A,Holec D et al.Surface and Coatings Technology[J],2012,206:2667.
  • 8Liu X J,Ren Y,Sun Set al.Thin SolidFilms[J],2011,520:876.
  • 9Xi Y,Fan H,Liu W.Journal of Alloys and Compounds[J],2010,496:695.
  • 10Cheng X Y,Wang Z H,Ma S L.Diamond andRelated Materials[J],2010,19:1336.

共引文献52

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部