摘要
研究了一类晶体界面非线性表面波。首先考虑了对应的晶体界面表面波方程,引入一个新的具有限制变量的泛函,并求出其变分。再利用变分原理,构造了一个经过改进后的广义变分迭代式。然后选取相应问题解的初始函数,并由新的迭代关系式依次求出各次渐近解析解。举例说明了用本方法求得的渐近解具有较好的近似度。最后叙述了得到的渐近解的物理意义。
A class of nonlinear surface waves along the boundary of crystal is studied. Firstly,the surface wave equation along the boundary of crystal is built. Leading into a functional with the new restricted variation and its variational is calculated. Secondly,a new improved generalized variational iteration is structured. Then the initial function of solution for corresponding problem is structured. From the new variational iteration,the each time asymptotic analytic solution is found successively. And from example,the accuracy of solution is very good by using this method. Finally,the physical meaning of obtained asymptotic solution is related.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第6期41-45,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(41275062)
安徽省教育厅自然科学基金资助项目(KJ2015A418
KJ2015A347)
关键词
表面波
渐近解
变分
晶体
surface waves
asymptotic solution
variational
crystal